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 A Look Ahead  
  •   We begin with a brief introduction to the study of chemistry and describe

its role in our modern society. (1.1 and 1.2)

  •   Next, we become familiar with the scientifi c method, which is a systematic
approach to research in all scientifi c disciplines. (1.3)

  •   We defi ne matter and note that a pure substance can either be an element
or a compound. We distinguish between a homogeneous mixture and a het-
erogeneous mixture. We also learn that, in principle, all matter can exist in
one of three states: solid, liquid, and gas. (1.4 and 1.5)

  •   To characterize a substance, we need to know its physical properties, which
can be observed without changing its identity and chemical properties, which
can be demonstrated only by chemical changes. (1.6)

  •   Being an experimental science, chemistry involves measurements. We learn
the basic SI units and use the SI-derived units for quantities like volume and
density. We also become familiar with the three temperature scales: Celsius,
Fahrenheit, and Kelvin. (1.7)

  •   Chemical calculations often involve very large or very small numbers and a
convenient way to deal with these numbers is the scientifi c notation. In
calculations or measurements, every quantity must show the proper number
of signifi cant fi gures, which are the meaningful digits. (1.8)

  •   Finally, we learn that dimensional analysis is useful in chemical calculations.
By carrying the units through the entire sequence of calculations, all the
units will cancel except the desired one. (1.9)

 Chemistry is an active, evolving science that has vital importance to our
world, in both the realm of nature and the realm of society. Its roots are 

ancient, but as we will see, chemistry is every bit a modern science. 
 We will begin our study of chemistry at the macroscopic level, where we 

can see and measure the materials of which our world is made. In this chapter, 
we will discuss the scientifi c method, which provides the framework for research 
not only in chemistry but in all other sciences as well. Next we will discover 
how scientists defi ne and characterize matter. Then we will spend some time 
learning how to handle numerical results of chemical measurements and solve 
numerical problems. In Chapter 2, we will begin to explore the microscopic world 
of atoms and molecules.     
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 1.1   Chemistry: A Science for the Twenty-First Century 

  Chemistry  is  the study of matter and the changes it undergoes.  Chemistry is 
often called the central science, because a basic knowledge of chemistry is 
essential for students of biology, physics, geology, ecology, and many other 
subjects. Indeed, it is central to our way of life; without it, we would be living 
shorter lives in what we would consider primitive conditions, without automobiles, 
electricity, computers, CDs, and many other everyday conveniences. 
  Although chemistry is an ancient science, its modern foundation was laid in 
the nineteenth century, when intellectual and technological advances enabled 
scientists to break down substances into ever smaller components and 
consequently to explain many of their physical and chemical characteristics. The 
rapid development of increas-ingly sophisticated technology throughout the 
twentieth century has given us even greater means to study things that cannot be 
seen with the naked eye. Using comput-ers and special microscopes, for example, 
chemists can analyze the structure of atoms and molecules—the fundamental units on 
which the study of chemistry is based—and design new substances with specifi c  
properties, such as drugs and environmentally friendly consumer products. 
  As we enter the twenty-fi rst century, it is fi tt ing to ask what part the central sci-
ence will have in this century. Almost certainly, chemistry will continue to play 
a pivotal role in all areas of science and technology. Before plunging into the study 
of matter and its transformation, let us consider some of the frontiers that chemists 
are currently exploring ( Figure 1.1 ). Whatever your reasons for taking general 
chemistry, a good knowledge of the subject will better enable you to appreciate 
its impact on society and on you as an individual.  

      The Chinese characters for chemistry 
mean “The study of change.”  



            1.2   The Study of Chemistry  

 Compared with other subjects, chemistry is commonly believed to be more difficult, at least at the 
introductory level. There is some justification for this perception; for one thing, chemistry has a very 
specialized vocabulary. However, even if this is your fi rst course in chemistry, you already have more 
familiarity with the subject than you may realize. In everyday conversations we hear words that 
have a chemical connection, although they may not be used in the scientifically correct sense. 
Examples are “elec-tronic,” “quantum leap,” “equilibrium,” “catalyst,” “chain reaction,” and “critical 
mass.” Moreover, if you cook, then you are a practicing chemist! From experience gained in the 
kitchen, you know that oil and water do not mix and that boiling water left on the stove will 
evaporate. You apply chemical and physical principles when you use baking soda to leaven bread, 
choose a pressure cooker to shorten the time it takes to prepare soup, add meat tenderizer to a pot 
roast, squeeze lemon juice over sliced pears to prevent them from turning brown or over fish to minimize its 
odor, and add vinegar to the water in which you are going to poach eggs. Every day we observe such 
changes without thinking about their chemical nature. The purpose of this course is to make you think 
like a chemist, to look at the  macroscopic world —the things we can see, touch, and measure directly—
and visualize the particles and events of the  microscopic world  that we cannot experience without 
modern technology and our imaginations. 

 At first some students find it confusing that their chemistry instructor and textbook seem to be 
continually shifting back and forth between the macroscopic and microscopic worlds. Just keep in mind 
that the data for chemical investigations most often come from observations of large-scale 
phenomena, but the explanations frequently lie in the unseen and partially imagined microscopic world of 
atoms and molecules. In other words, chemists often  see  one thing (in the macroscopic world) and  
think another (in the microscopic world). Looking at the rusted nails in  Figure 1.2, for example, a 
chemist might think about the basic properties of individual atoms of iron and how these units interact 
with other atoms and molecules to produce the observed change.   

1.4   Classifications of Matter  

We defined chemistry at the beginning of the chapter as the study of matter and the changes 
it undergoes.  Matter  is  anything that occupies space and has mass.  Matter includes things we can 
see and touch (such as water, earth, and trees), as well as things we cannot (such as air). Thus, 
everything in the universe has a “chemical” connection. 
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  Figure 1.2       A simplifi ed molecular view of rust (Fe2O3) formation from iron (Fe) atoms and oxygen molecules (O2). In reality the

process requires water, and rust also contains water molecules.    



  Chemists distinguish among several subcategories of matter based on composition and properties. 
The classifications of matter include substances, mixtures,  elements, and compounds, as well as atoms 
and molecules, which we will consider in Chapter 2.  

 Substances and Mixtures 
 A  substance  is  a form of matter that has a definite (constant) composition and distinct properties.  Examples 
are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in 
composition and can be identified by their appearance, smell, taste, and other properties. A
mixture  is  a combination of two or more substances in which the substances retain their distinct 
identities.  Some familiar examples are air, soft drinks, milk, and cement. Mixtures do not have constant 
composition. Therefore, samples of air col-lected in different cities would probably differ in composition 
because of differences in altitude, pollution, and so on. 

 Mixtures are either homogeneous or heterogeneous. When a spoonful of sugar dissolves in water we 
obtain a  homogeneous mixture  in which  the composition of the mixture is the same throughout.  If sand is 
mixed with iron filings, however, the sand grains and the iron filings remain separate ( Figure 1.4 ). This type 
of mixture is called a  heterogeneous mixture  because  the composition is not uniform.  

 Any mixture, whether homogeneous or heterogeneous, can be created and then separated by physical 
means into pure components without changing the identities of the components. Thus, sugar can be 
recovered from a water solution by heating the solution and evaporating it to dryness. Condensing the 
vapor will give us back the water component. To separate the iron-sand mixture, we can use a magnet to 
remove the iron fi lings from the sand, because sand is not attracted to the magnet [see  Fig-ure 1.4 (b)]. 
After separation, the components of the mixture will have the same com-position and properties as they 
did to start with.   

 Elements and Compounds 
 Substances can be either elements or compounds. An  element  is  a substance that cannot be separated 
into simpler substances by chemical means.  94  elements can be found as naturally occurring on Earth. 
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  Figure 1.4       (a) The mixture 

contains iron fi lings and sand. 

(b) A magnet separates the iron

fi lings from the mixture. The

same technique is used on a

larger scale to separate iron and

steel from nonmagnetic objects

such as aluminum, glass, and

plastics.
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                Name  Symbol   Name  Symbol   Name  Symbol  

    Aluminum   Al   Fluorine   F   Oxygen   O  

  Arsenic   As   Gold   Au   Phosphorus   P  

  Barium   Ba   Hydrogen   H   Platinum   Pt  

  Bismuth   Bi   Iodine   I   Potassium   K  

  Bromine   Br   Iron   Fe   Silicon   Si  

  Calcium   Ca   Lead   Pb   Silver   Ag  

  Carbon   C   Magnesium   Mg   Sodium   Na  

  Chlorine   Cl   Manganese   Mn   Sulfur   S  

  Chromium   Cr   Mercury   Hg   Tin   Sn  

  Cobalt   Co   Nickel   Ni   Tungsten   W  

  Copper   Cu   Nitrogen   N   Zinc   Zn    

TABLE 1.1   Some Common Elements and Their Symbols 

Others have been created by scientists via nuclear processes, which are the subject of Chapter 23 of 
this text. 

For convenience, chemists use symbols of one or two letters to represent the elements. The first 
letter of a symbol is  always  capitalized, but any following letters are not. For example, Co is the 
symbol for the element cobalt, whereas CO is the formula for the carbon monoxide molecule.  Table 1.1  
shows the names and symbols of some of the more common elements; a complete list of the 
elements and their symbols appears inside the front cover of this book. The symbols of some elements 
are derived from their Latin names—for example, Au from  aurum  (gold), Fe from  ferrum  (iron), and 
Na from  natrium  (sodium)—whereas most of them come from their English names. Appendix 1 gives the 
origin of the names and lists the discoverers of most of the elements. 

  Atoms of most elements can interact with one another to form compounds. Hydrogen gas, for example, 
burns in oxygen gas to form water, which has properties that are distinctly different from those of the 
starting materials. Water is made up of two parts hydrogen and one part oxygen. This composition does 
not change, regardless of whether the water comes from a faucet in the United States, a lake in 
Outer Mongolia, or the ice caps on Mars. Thus, water is a compound,   a substance composed of 
atoms of two or more elements chemically united in fixed proportions.  Unlike mixtures, compounds can 
be separated only by chemical means into their pure components. 

  The relationships among elements, compounds, and other categories of matter are summarized in  
Figure 1.5 .  
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  Figure 1.5      Classifi cation of matter.    

1.5 The Three States of Matter  

 All substances, at least in principle, can exist in three states: solid, liquid, and gas. As  Figure 1.6  shows, 
gases differ from liquids and solids in the distances between the molecules. In a solid, molecules are held 
close together in an orderly fashion with little freedom of motion. Molecules in a liquid are close together 
but are not held so rigidly in position and can move past one another. In a gas, the molecules are sepa-
rated by distances that are large compared with the size of the molecules. 

 The three states of matter can be interconverted without changing the composition of the substance. 
Upon heating, a solid (for example, ice) will melt to form a liquid (water). (The temperature at which this 
transition occurs is called the  melting point. ) Further heating will convert the liquid into a gas. (This 
conversion takes place at the  boiling point  of the liquid.) On the other hand, cooling a gas will cause it to 
condense into a liquid. When the liquid is cooled further, it will freeze into the solid form. 
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  Figure 1.6       Microscopic views 

of a solid, a liquid, and a gas.    
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 Figure 1.7  shows the three states of water. Note that the properties of water are unique 
among common substances in that the molecules in the liquid state are more closely 
packed than those in the solid state.  

  Figure 1.7       The three states of 

matter. A hot poker changes ice 

into water and steam.    

   1.6   

1.6 Physical and Chemical Properties of Matter  

 Substances are identified by their properties as well as by their composition. Color, melting point, and boiling 
point are physical properties. A  physical property   can be measured and observed without changing the 
composition or identity of a substance.  



For example, we can measure the melting point of ice by heating a block of ice and 
recording the temperature at which the ice is converted to water. Water differs from 
ice only in appearance, not in composition, so this is a physical change; we can freeze 
the water to recover the original ice. Therefore, the melting point of a substance is a 
physical property. Similarly, when we say that helium gas is lighter than air, we are 
referring to a physical property. 

  On the other hand, the statement “Hydrogen gas burns in oxygen gas to form 
water” describes a  chemical property  of hydrogen, because  to observe this property 
we must carry out a chemical change,  in this case burning. After the change, the 
original chemical substance, the hydrogen gas, will have vanished, and all that will 
be left is a different chemical substance—water. We  cannot  recover the hydrogen from 
the water by means of a physical change, such as boiling or freezing. 

 Every time we hard-boil an egg, we bring about a chemical change. When 
subjected to a temperature of about 100°C, the yolk and the egg white undergo 
changes that alter not only their physical appearance but their chemical makeup as 
well. When eaten, the egg is changed again, by substances in our bodies called 
enzymes.  This digestive action is another example of a chemical change. What 
happens during digestion depends on the chemical properties of both the enzymes 
and the food. 

  All measurable properties of matter fall into one of two additional categories: 
extensive properties and intensive properties. The measured value of an  extensive 
property depends on how much matter is being considered. Mass,  which is  the  
quantity of matter in a given sample of a substance,  is an extensive property. More 
matter means more mass. Values of the same extensive property can be added 
together. For example, two copper pennies will have a combined mass that is the 
sum of the masses of each penny, and the length of two tennis courts is the sum 
of the lengths of each tennis court.  Volume,  defined as  length cubed,  is another 
extensive property. The value of an extensive quantity depends on the amount of 
matter. 

 The measured value of an  intensive property does not depend on how much mat-
ter is being considered. Density,  defined as  the mass of an object divided by its volume, 
is an intensive property. So is temperature. Suppose that we have two beakers of water 
at the same temperature. If we combine them to make a single quantity of water in 
a larger beaker, the temperature of the larger quantity of water will be the same as it 
was in two separate beakers. Unlike mass, length, and volume, temperature and other 
intensive properties are not additive.  
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      Hydrogen burning in air to form water.  
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   1.7   Measurement  

 The measurements chemists make are often used in calculations to obtain other related quantities. Different 
instruments enable us to measure a substance’s properties: The meterstick measures length or scale; the buret, the 
pipet, the graduated cylinder, and the volumetric fl ask measure volume ( Figure 1.8 ); the balance measures mass; 
the thermometer measures temperature. These instruments provide measurements of  mac-roscopic properties,  which  
can be determined directly.   Microscopic properties,   on the atomic or molecular scale, must be determined by an 
indirect method,  as we will see in Chapter 2. 

 A measured quantity is usually written as a number with an appropriate unit. To say that the distance 
between New York and San Francisco by car along a cer-tain route is 5166 is meaningless. We must specify 
that the distance is 5166 kilometers. The same is true in chemistry; units are essential to stating measurements 
correctly.  

 SI Units 
 For many years, scientists recorded measurements in  metric units,  which are related decimally, that is, by powers 
of 10. In 1960, however, the General Conference of Weights and Measures, the international authority on units, 
proposed a revised metric system called the  International System of Units  (abbreviated  SI,  from the French  S 
ystème  I nternationale d’Unites).  Table 1.2  shows the seven SI base units. All other units of measurement can be 
derived from these base units. Like metric units, SI units are modifi ed in decimal fashion by a series of prefi xes, as 
shown in  Table 1.3 . We will use both metric and SI units in this book. 

 Measurements that we will utilize frequently in our study of chemistry include time, mass, volume, density, 
and temperature.   

Graduated cylinder Volumetric flaskPipetBuret

mL
100

90

80

70

60

50

40

30

20

10

mL
0

1

2

3

4

15

16

17

18

20

19

25
 m

L

1 liter

  Figure 1.8       Some common 

measuring devices found in a 

chemistry laboratory. These 

devices are not drawn to scale 

relative to one another. We will 

discuss the uses of these 

measuring devices in Chapter 4.    
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         Base Quantity  Name of Unit  Symbol   

  Length   meter   m  

  Mass   kilogram   kg  

  Time   second   s  

  Electrical current   ampere   A  

  Temperature   kelvin   K  

  Amount of substance   mole   mol  

  Luminous intensity   candela   cd   

TABLE 1.2      SI Base Units 

             Prefi x     Symbol     Meaning    Example   

    tera-   T   1,000,000,000,000, or 1012   1 terameter (Tm) = 1 × 1012 m  

  giga-   G   1,000,000,000, or 109   1 gigameter (Gm) = 1 × 109 m  

  mega-   M   1,000,000, or 106   1 megameter (Mm) = 1 × 106 m  

  kilo-   k   1,000, or 103   1 kilometer (km) = 1 × 103 m  

  deci-   d   1/10, or 10–1   1 decimeter (dm) = 0.1 m  

  centi-   c   1/100, or 10–2   1 centimeter (cm) = 0.01 m  

  milli-   m   1/1,000, or 10–3   1 millimeter (mm) = 0.001 m  

  micro-   m   1/1,000,000, or 10–6   1 micrometer (mm) = 1 × 1026 m  

  nano-   n   1/1,000,000,000, or 10–9   1 nanometer (nm) = 1 × 1029 m  

  pico-   p   1/1,000,000,000,000, or 10–12   1 picometer (pm) = 1 × 10212 m       

TABLE 1.3                Prefi xes Used with SI Units 

 Note that a metric prefi x simply represents 
a number: 

 1 mm = 1 × 10–3 m 

 Mass and Weight 
 The terms “mass” and “weight” are often used interchangeably, although, 
strictly speaking, they are different quantities. Whereas mass is a measure of the 
amount of matter in an object,  weight,  technically speaking, is  the force that 
gravity exerts on an object.  An apple that falls from a tree is pulled downward by 
Earth’s gravity. The mass of the apple is constant and does not depend on its 
location, but its weight does. For example, on the surface of the moon the apple 
would weigh only one-sixth what it does on Earth, because the moon’s gravity is 
only one-sixth that of Earth. The moon’s smaller gravity enabled astronauts to 
jump about rather freely on its surface despite their bulky suits and equipment. 
Chemists are interested primarily in mass, which can be determined readily with a 
balance; the process of measuring mass, oddly, is called  weighing.  

 The SI unit of mass is the  kilogram  (kg). Unlike the units of length and 
time, which are based on natural processes that can be repeated by scientists 
anywhere, the kilogram is defi ned in terms of a particular object ( Figure 1.9 ). In 
chemistry, however, the smaller  gram  (g) is more convenient: 

   1 kg = 1000 g = 1 × 103 g   

An astronaut jumping on the surface of 
the moon.
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 Volume 
 The SI unit of length is the  meter  (m), and the SI-derived unit for volume is the  cubic 
meter  (m3). Generally, however, chemists work with much smaller volumes, such as 
the cubic centimeter (cm3) and the cubic decimeter (dm3): 

    1 cm3 5 (1 3 1022 m)3 5 1 3 1026 m3 
    1 dm3 5 (1 3 1021 m)3 5 1 3 1023 m3 

   Another common unit of volume is the liter (L). A  liter  is  the volume occupied by 
one cubic decimeter.  One liter of volume is equal to 1000 milliliters (mL) or 
1000 cm3: 

    1 L 5 1000 mL  
5 1000 cm3 

 5 1 dm3  

   and one milliliter is equal to one cubic centimeter: 

   1 mL = 1 cm3 

    Figure 1.10  compares the relative sizes of two volumes. Even though the liter is not 
an SI unit, volumes are usually expressed in liters and milliliters.   

 Density 
 The equation for density is 

density 5
mass

volume 

   or 

d 5
m

V  
(1.1) 

   where  d, m,  and  V  denote density, mass, and volume, respectively. Because density is 
an intensive property and does not depend on the quantity of mass present, for a given 
substance the ratio of mass to volume always remains the same; in other words,  V  
increases as  m  does. Density usually decreases with temperature. 
    The SI-derived unit for density is the kilogram per cubic meter (kg/m3). This unit 
is awkwardly large for most chemical applications. Therefore, grams per cubic centi-
meter (g/cm3) and its equivalent, grams per milliliter (g/mL), are more commonly 
used for solid and liquid densities. Because gas densities are often very low, we 
express them in units of grams per liter (g/L): 

   1 g/cm3 5 1 g/mL 5 1000 kg/m3 
   1 g/L 5 0.001 g/mL 

    Table 1.4  lists the densities of several substances. 

Volume: 1 cm3; 
1 mL

1 cm

Volume: 1000 cm3;
1000 mL;
1 dm3;
1 L

1 cm

10 cm = 1 dm

  Figure 1.10       Comparison of two 

volumes, 1 mL and 1000 mL.    

 Densities of Some 

Substances at 25°C 

  TABLE 1.4 

 Density  

      Substance   (g/cm3)  

    Air*   0.001  

  Ethanol   0.79  

  Water   1.00  

  Mercury   13.6  

  Table salt   2.2  

  Iron   7.9  

  Gold   19.3  

  Osmium†   22.6    

  *Measured at 1 atmosphere.
   † Osmium (Os) is the densest element
known.   



 Examples 1.1 and 1.2 show density calculations. 
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              Gold bars.  

  EXAMPLE 1.1 

 Gold is a precious metal that is chemically unreactive. It is used mainly in jewelry, 
dentistry, and electronic devices. A piece of gold ingot with a mass of 301 g has a 
volume of 15.6 cm3. Calculate the density of gold. 

  Solution   We are given the mass and volume and asked to calculate the density. 
Therefore, from Equation (1.1), we write 

 d 5
m

V

 5
301 g

15.6 cm3

  5 19.3 g/cm3  

  Practice Exercise   A piece of platinum metal with a density of 21.5 g/cm3 has a 
volume of 4.49 cm3. What is its mass?   

 Similar problems: 1.21, 1.22. 

  EXAMPLE 1.2 

 The density of mercury, the only metal that is a liquid at room temperature, is 13.6 g/mL. 
Calculate the mass of 5.50 mL of the liquid. 

  Solution   We are given the density and volume of a liquid and asked to calculate the 
mass of the liquid. We rearrange Equation (1.1) to give 

  m 5 d 3 V

5 13.6 
g

mL
3 5.50 mL

  5  74.8 g

  Practice Exercise   The density of sulfuric acid in a certain car battery is 1.41 g/mL. 
Calculate the mass of 242 mL of the liquid.     

   Mercury.  

 Temperature Scales 
 Three temperature scales are currently in use. Their units are °F (degrees 
Fahren-heit), °C (degrees Celsius), and K (kelvin). The Fahrenheit scale, which is 
the most commonly used scale in the United States outside the laboratory, defi nes 
the normal freezing and boiling points of water to be exactly 32°F and 212°F, 
respectively. The Celsius scale divides the range between the freezing point (0°
C) and boiling point (100°C) of water into 100 degrees. As  Table 1.2  shows, the
kelvin  is  the SI base unit of temperature:  it is the  absolute  temperature scale. By 
absolute we mean that the zero on the Kelvin scale, denoted by 0 K, is the 
lowest temperature that can be attained theoretically. On the other hand, 0°F 
and 0°C are based on the behavior of an arbitrarily chosen substance, water.  
Figure 1.11  compares the three temperature scales. 

 Note that the Kelvin scale does not have 
the degree sign. Also, temperatures 
 expressed in kelvins can never be 
negative. 
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 Both the Celsius and the Kelvin scales have units of equal magnitude; that 
is, one degree Celsius is equivalent to one kelvin. Experimental studies have shown 
that absolute zero on the Kelvin scale is equivalent to –273.15°C on the Celsius 
scale. Thus, we can use the following equation to convert degrees Celsius to 
kelvin: 

? K 5 (°C 1 273.15°C) 
1 K

1°C 
(1.4) 

 We will frequently find it necessary to  convert between degrees Celsius and 
kelvin. 

100°C 212°F

98.6°F

77°F

32°F

Celsius Fahrenheit

37°C

25°C

0°C

373 K

Kelvin

310 K

298 K

273 K

Boiling point
of water

Body
temperature

Room
temperature

Freezing point
of water

  Figure 1.11       Comparison of the 

three temperature scales: Celsius, 

and Fahrenheit, and the absolute 

(Kelvin) scales. Note that there 

are 100 divisions, or 100 degrees, 

between the freezing point and 

the boiling point of water on 

the Celsius scale, and there 

are 180 divisions, or 180 

degrees, between the same two 

temperature limits on the 

Fahrenheit scale. The Celsius 

scale was formerly called the 

centigrade scale.    
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       1.8   Handling Numbers  

 Having surveyed some of the units used in chemistry, we now turn to techniques for han-
dling numbers associated with measurements: scientifi c notation and  signifi cant fi gures.  

 Scientifi c Notation 
 Chemists often deal with numbers that are either extremely large or extremely small. 
For example, in 1 g of the element hydrogen there are roughly 

   602,200,000,000,000,000,000,000 

   hydrogen atoms. Each hydrogen atom has a mass of only 

   0.00000000000000000000000166 g 

   These numbers are cumbersome to handle, and it is easy to make mistakes when using 
them in arithmetic computations. Consider the following multiplication: 

   0.0000000056 × 0.00000000048 = 0.000000000000000002688 

   It would be easy for us to miss one zero or add one more zero after the decimal point. 
Consequently, when working with very large and very small numbers, we use a sys-
tem called  scientifi c notation.  Regardless of their magnitude, all numbers can be 
expressed in the form 

   N × 10n 

   where  N  is a number between 1 and 10 and  n,  the exponent, is a positive or negative 
integer (whole number). Any number expressed in this way is said to be written in 
scientifi c notation. 

 Suppose that we are given a certain number and asked to express it in scientifi c 
notation. Basically, this assignment calls for us to fi nd  n.  We count the number of 
places that the decimal point must be moved to give the number  N  (which is between 
1 and 10). If the decimal point has to be moved to the left, then  n  is a positive inte-
ger; if it has to be moved to the right,  n  is a negative integer. The following examples 
illustrate the use of scientifi c notation: 

 (1) Express 568.762 in scientifi c notation:

   568.762 = 5.68762 × 102 

   Note that the decimal point is moved to the left by two places and  n  = 2. 

 (2) Express 0.00000772 in scientifi c notation:

   0.00000772 = 7.72 × 10–6 

   Here the decimal point is moved to the right by six places and n = –6. 



    Keep in mind the following two points. First,  n  = 0 is used for numbers that are 
not expressed in scientifi c notation. For example, 74.6 × 100 ( n  = 0) is equivalent to 
74.6. Second, the usual practice is to omit the superscript when  n  = 1. Thus, the 
scientifi c notation for 74.6 is 7.46 × 10 and not 7.46 × 101. 

 Next, we consider how scientifi c notation is handled in arithmetic operations.  

 Addition and Subtraction 
 To add or subtract using scientifi c notation, we fi rst write each quantity—say N1 and 
N2—with the same exponent  n.  Then we combine N1 and N2; the exponents remain 
the same. Consider the following examples: 

  (7.4 3 103) 1 (2.1 3 103) 5 9.5 3 103

  (4.31 3 104) 1 (3.9 3 103) 5 (4.31 3 104) 1 (0.39 3 104)
  5 4.70 3 104

  (2.22 3 1022) 2 (4.10 3 1023) 5 (2.22 3 1022) 2 (0.41 3 1022) 
  5 1.81 3 1022

 Multiplication and Division 
 To multiply numbers expressed in scientifi c notation, we multiply N1 and N2 in the 
usual way, but  add  the exponents together. To divide using scientifi c notation, we 
divide N1 and N2 as usual and subtract the exponents. The following examples show 
how these operations are performed: 

  (8.0 3 104) 3 (5.0 3 102) 5 (8.0 3 5.0)(10412)
  5 40 3 106

  5 4.0 3 107

  (4.0 3 1025) 3 (7.0 3 103) 5 (4.0 3 7.0)(102513) 
  5 28 3 1022

  5 2.8 3 1021

 
6.9 3 107

3.0 3 1025 5
6.9

3.0
3 1072(25)

  5 2.3 3 1012

 
8.5 3 104

5.0 3 109 5
8.5

5.0
3 10429

  5 1.7 3 1025

 Signifi cant Figures 
 Except when all the numbers involved are integers (for example, in counting the number 
of students in a class), it is often impossible to obtain the exact value of the quantity under 
investigation. For this reason, it is important to indicate the margin of error in a measurement 
by clearly indicating the number of  significant figures,  which are  the meaningful digits in a 
measured or calculated quantity.  When significant figures are used, the last digit is 
understood to be uncertain. For example, we might measure the volume of a given amount 
of liquid using a graduated cylinder with a scale that gives an uncertainty of 1 mL in the 
measurement. If the volume is found to be 6 mL, then the actual volume is in the range of 
5 mL to 7 mL. We represent 
the volume of the liquid as (6 ; 1) mL. In this case, there is only one significant figure (the 
digit 6) that is uncertain by either plus or minus 1 mL. For greater accuracy, we might use a 
graduated cylinder that has finer divisions, so that the volume we measure is now uncertain 
by only 0.1 mL. If the volume of the liquid is now found to be 6.0 mL, we may express the 
quantity as (6.0 ; 0.1) mL, and the actual value 
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 Any number raised to the power zero is 
equal to one. 



24 Chemistry: The Study of Change

is somewhere between 5.9 mL and 6.1 mL. We can further improve the measuring 
device and obtain more signifi cant fi gures, but in every case, the last digit is always 
uncertain; the amount of this uncertainty depends on the particular measuring device 
we use. 

  Figure 1.12  shows a modern balance. Balances such as this one are available in 
many general chemistry laboratories; they readily measure the mass of objects to four 
decimal places. Therefore, the measured mass typically will have four signifi cant 
fi gures (for example, 0.8642 g) or more (for example, 3.9745 g). Keeping track of 
the number of signifi cant fi gures in a measurement such as mass ensures that calcula-
tions involving the data will refl ect the precision of the measurement.  

 Guidelines for Using Signifi cant Figures 
 We must always be careful in scientifi c work to write the proper number of signifi cant 
fi gures. In general, it is fairly easy to determine how many signifi cant fi gures a num-
ber has by following these rules:  

  1.   Any digit that is not zero is signifi cant. Thus, 845 cm has three signifi cant fi gures,
1.234 kg has four signifi cant fi gures, and so on.

  2.   Zeros between nonzero digits are signifi cant. Thus, 606 m contains three signifi -
cant fi gures, 40,501 kg contains fi ve signifi cant fi gures, and so on.

  3.   Zeros to the left of the fi rst nonzero digit are not signifi cant. Their purpose is to
indicate the placement of the decimal point. For example, 0.08 L contains one
signifi cant fi gure, 0.0000349 g contains three signifi cant fi gures, and so on.

  4.   If a number is greater than 1, then all the zeros written to the right of the decimal
point count as signifi cant fi gures. Thus, 2.0 mg has two signifi cant fi gures,
40.062 mL has fi ve signifi cant fi gures, and 3.040 dm has four signifi cant fi gures.
If a number is less than 1, then only the zeros that are at the end of the number
and the zeros that are between nonzero digits are signifi cant. This means that
0.090 kg has two signifi cant fi gures, 0.3005 L has four signifi cant fi gures, 0.00420
min has three signifi cant fi gures, and so on.

  5.   For numbers that do not contain decimal points, the trailing zeros (that is, zeros
after the last nonzero digit) may or may not be signifi cant. Thus, 400 cm may have
one signifi cant fi gure (the digit 4), two signifi cant fi gures (40), or three signifi cant
fi gures (400). We cannot know which is correct without more information. By using
scientifi c notation, however, we avoid this ambiguity. In this particular case, we can
express the number 400 as 4 × 102 for one signifi cant fi gure, 4.0 × 102 for two
signifi cant fi gures, or 4.00 × 102 for three signifi cant fi gures.  

 Example 1.4 shows the determination of signifi cant fi gures.

  Figure 1.12       A single-pan 

balance.    

  EXAMPLE 1.4 

 Determine the number of signifi cant fi gures in the following measurements: (a) 478 cm, 
(b) 6.01 g, (c) 0.825 m, (d) 0.043 kg, (e) 1.310 × 1022 atoms, (f) 7000 mL.

 Solution   (a) Three, because each digit is a nonzero digit. (b) Three, because zeros 
between nonzero digits are signifi cant. (c) Three, because zeros to the left of the fi rst 
nonzero digit do not count as signifi cant fi gures. (d) Two. Same reason as in (c). 
(e) Four, because the number is greater than one so all the zeros written to the right of
the decimal point count as signifi cant fi gures. (f) This is an ambiguous case. The number
of signifi cant fi gures may be four (7.000 × 103), three (7.00 × 103), two (7.0 × 103),

(Continued)(Continued)



 A second set of rules specifi es how to handle signifi cant fi gures in calculations.  

  1.   In addition and subtraction, the answer cannot have more digits to the right of
the decimal point than either of the original numbers. Consider these examples:

 89.332 
 + 1.1   m88 one digit after the decimal point

 90.432 m88 round off to 90.4

 2.097 
 2 0.12  m88 two digits after the decimal point 

 1.977 m88 round off to 1.98 

 The rounding-off procedure is as follows. To round off a number at a certain point 
we simply drop the digits that follow if the fi rst of them is less than 5. Thus, 8.724 
rounds off to 8.72 if we want only two digits after the decimal point. If the fi rst 
digit following the point of rounding off is equal to or greater than 5, we add 1 to 
the preceding digit. Thus, 8.727 rounds off to 8.73, and 0.425 rounds off to 0.43.  

  2.   In multiplication and division, the number of signifi cant fi gures in the fi nal prod-
uct or quotient is determined by the original number that has the  smallest  number 
of signifi cant fi gures. The following examples illustrate this rule:

  2.8 3 4.5039 5 12.61092 — round off to 13
6.85

112.04
5 0.0611388789 — round off to 0.0611

  3.   Keep in mind that  exact numbers  obtained from defi nitions or by counting num-
bers of objects can be considered to have an infi nite number of signifi cant fi gures.
For example, the inch is defi ned to be exactly 2.54 centimeters; that is,

 1 in 5 2.54 cm 

 Thus, the “2.54” in the equation should not be interpreted as a measured number with 
three signifi cant fi gures. In calculations involving conversion between “in” and “cm,” 
we treat both “1” and “2.54” as having an infi nite number of signifi cant fi gures. Sim-
ilarly, if an object has a mass of 5.0 g, then the mass of nine such objects is 

 5.0 g 3 9 5 45 g 

 The answer has two signifi cant fi gures because 5.0 g has two signifi cant fi gures. 
The number 9 is exact and does not determine the number of signifi cant fi gures.   
 Example 1.5 shows how signifi cant fi gures are handled in arithmetic operations. 
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or one (7 × 103). This example illustrates why scientifi c notation must be used to show 
the proper number of signifi cant fi gures.   

 Practice Exercise   Determine the number of signifi cant fi gures in each of the following 
measurements: (a) 24 mL, (b) 3001 g, (c) 0.0320 m3, (d) 6.4 × 104 molecules, (e) 560 kg.   

 Similar problems: 1.33, 1.34. 

  EXAMPLE 1.5 

 Carry out the following arithmetic operations to the correct number of signifi cant 
fi gures: (a) 11,254.1 g 1 0.1983 g, (b) 66.59 L 2 3.113 L, (c) 8.16 m 3 5.1355, 
(d) 0.0154 kg 4 88.3 mL, (e) 2.64 3 103 cm 1 3.27 3 102 cm.

(Continued)
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  The preceding rounding-off procedure applies to one-step calculations. In 
 chain calculations,  that is, calculations involving more than one step, we can get 
a different answer depending on how we round off. Consider the following two-step 
calculations: 

 First step:      A 3 B 5 C 
 Second step:      C 3 D 5 E 

 Let’s suppose that A 5 3.66, B 5 8.45, and D 5 2.11. Depending on whether we round 
off C to three or four signifi cant fi gures, we obtain a different number for E: 

  Method 1   Method 2  

 3.66 3 8.45 5 30.9 3.66 3 8.45 5 30.93 
 30.9 3 2.11 5 65.2 30.93 3 2.11 5 65.3 

 However, if we had carried out the calculation as 3.66 3 8.45 3 2.11 on a calculator 
without rounding off the intermediate answer, we would have obtained 65.3 as the answer 
for E. Although retaining an additional digit past the number of signifi cant fi gures for 
intermediate steps helps to eliminate errors from rounding, this procedure is not necessary 
for most calculations because the difference between the answers is usually quite small. 
Therefore, for most examples and end-of-chapter problems where intermediate answers 
are reported, all answers, intermediate and fi nal, will be rounded.    

 Accuracy and Precision 
 In discussing measurements and signifi cant fi gures, it is useful to distinguish between 
 accuracy  and  precision.   Accuracy  tells us  how close a measurement is to the true 
value of the quantity that was measured.  To a scientist there is a distinction between 

 Solution   In addition and subtraction, the number of decimal places in the answer is 
determined by the number having the lowest number of decimal places. In multiplication 
and division, the signifi cant number of the answer is determined by the number having 
the smallest number of signifi cant fi gures. 

 (a) 11,254.1 g 
  1    0.1983 g

 11,254.2983 g m88 round off to 11,254.3 g 

 (b) 66.59 L 
 2 3.113 L

  63.477 L m88 round off to 63.48 L 

 (c) 8.16 m 3 5.1355 5 41.90568 m m88 round off to 41.9 m

 (d) 
0.0154 kg

88.3 mL
 5 0.000174405436 kg/mL m88 round off to 0.000174 kg/mL 

or 1.74 3 1024 kg/mL

 (e) First we change 3.27 3 102 cm to 0.327 3 103 cm and then carry out the addition
(2.64 cm 1 0.327 cm) 3 103. Following the procedure in (a), we fi nd the answer is
2.97 3 103 cm.   

 Practice Exercise   Carry out the following arithmetic operations and round off the 
answers to the appropriate number of signifi cant fi gures: (a) 26.5862 L 1 0.17 L, 
(b) 9.1 g 2 4.682 g, (c) 7.1 3 104 dm 3 2.2654 3 102 dm, (d) 6.54 g 4 86.5542 mL,
(e) (7.55 3 104 m) 2 (8.62 3 103 m).   



accuracy and precision.  Precision   refers to how closely two or more measurements of 
the same quantity agree with one another  ( Figure 1.13 ). 

 The difference between accuracy and precision is a subtle but important one. 
Suppose, for example, that three students are asked to determine the mass of a piece 
of copper wire. The results of two successive weighings by each student are 

  Student A   Student B   Student C  

 1.964 g 1.972 g 2.000 g 
 1.978 g 1.968 g 2.002 g 

   Average value 1.971 g 1.970 g 2.001 g 

   The true mass of the wire is 2.000 g. Therefore, Student B’s results are more  precise  
than those of Student A (1.972 g and 1.968 g deviate less from 1.970 g than 1.964 g 
and 1.978 g from 1.971 g), but neither set of results is very  accurate.  Student C’s 
results are not only the most  precise,  but also the most  accurate,  because the average 
value is closest to the true value. Highly accurate measurements are usually precise too. 
On the other hand, highly precise measurements do not necessarily guarantee accurate 
results. For example, an improperly calibrated meterstick or a faulty balance may give 
precise readings that are in error.    

   1.9   Dimensional Analysis in Solving Problems  

 Careful measurements and the proper use of signifi cant fi gures, along with correct 
calculations, will yield accurate numerical results. But to be meaningful, the answers 
also must be expressed in the desired units. The procedure we use to convert between 
units in solving chemistry problems is called  dimensional analysis  (also called the 
 factor-label method  ). A simple technique requiring little memorization, dimensional 
analysis is based on the relationship between different units that express the same 
physical quantity.     For example, by defi nition 1 in 5 2.54 cm (exactly). This equiva-
lence enables us to write a conversion factor as follows: 

   

1 in

2.54 cm 

   Because both the numerator and the denominator express the same length, this fraction 
is equal to 1. Similarly, we can write the conversion factor as 

2.54 cm

1 in

10

30

60

10

30

60

100

10

30

60

100100

(a) (b) (c)

  Figure 1.13       The distribution of 

darts on a dart board shows the 

difference between precise and 

accurate. (a) Good accuracy and 

good precision. (b) Poor accuracy 

and good precision. (c) Poor 

accuracy and poor precision. The 

black dots show the positions of 

the darts.    
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      Dimensional analysis might also have led 
Einstein to his famous mass-energy 
equation E 5 mc2.  
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   which is also equal to 1. Conversion factors are useful for changing units. Thus, if 
we wish to convert a length expressed in inches to centimeters, we multiply the length 
by the appropriate conversion factor. 

12.00 in 3
2.54 cm

1 in
5 30.48 cm

   We choose the conversion factor that cancels the unit inches and produces the desired 
unit, centimeters. Note that the result is expressed in four signifi cant fi gures because 
2.54 is an exact number. 

 Next let us consider the conversion of 57.8 meters to centimeters. This problem 
can be expressed as 

   ? cm 5 57.8 m 

   By defi nition, 

   1 cm 5 1 3 1022 m 

   Because we are converting “m” to “cm,” we choose the conversion factor that has 
meters in the denominator, 

   

1 cm

1 3 1022 m 

   and write the conversion as 

 ? cm 5 57.8 m 3
1 cm

1 3 1022 m 
5 5780 cm

 5 5.78 3 103 cm

   Note that scientifi c notation is used to indicate that the answer has three signifi cant 
fi gures. Again, the conversion factor 1 cm/1 3 1022 m contains exact numbers; there-
fore, it does not affect the number of signifi cant fi gures. 

 In general, to apply dimensional analysis we use the relationship 

   given quantity 3 conversion factor 5 desired quantity 

   and the units cancel as follows: 

given unit 3
desired unit

given unit
5 desired unit

   In dimensional analysis, the units are carried through the entire sequence of calcula-
tions. Therefore, if the equation is set up correctly, then all the units will cancel except 
the desired one. If this is not the case, then an error must have been made somewhere, 
and it can usually be spotted by reviewing the solution.  

 A Note on Problem Solving 
 At this point you have been introduced to scientifi c notation, signifi cant fi gures, and 
dimensional analysis, which will help you in solving numerical problems. Chemistry 
is an experimental science and many of the problems are quantitative in nature. The 
key to success in problem solving is practice. Just as a marathon runner cannot prepare 
for a race by simply reading books on running and a pianist cannot give a successful 
concert by only memorizing the musical score, you cannot be sure of your  understanding 

 Remember that the unit we want appears 
in the numerator and the unit we want to 
cancel appears in the denominator. 



of chemistry without solving problems. The following steps will help to improve your 
skill at solving numerical problems.  

1.  Read the question carefully. Understand the information that is given and what you are asked
to solve. Frequently it is helpful to make a sketch that will help you to visualize the situation.

2.  Find the appropriate equation that relates the given information and the unknown quantity.
Sometimes solving a problem will involve more than one step, and you may be expected to
look up quantities in tables that are not provided in the problem. Dimensional analysis is
often needed to carry out conversions.

3.  Check your answer for the correct sign, units, and signifi cant fi gures.

4.  A very important part of problem solving is being able to judge whether the answer is
reasonable. It is relatively easy to spot a wrong sign or incorrect units. But if a number (say 9) is
incorrectly placed in the denominator instead of in the numerator, the answer would be too
small even if the sign and units of the cal-culated quantity were correct.

5.  One way to quickly check the answer is to make a “ball-park” estimate. The idea here is to
round off the numbers in the calculation in such a way so as to simplify the arithmetic. This
approach is sometimes called the “back-of-the-envelope calculation” because it can be done
easily without using a calculator. The answer you get will not be exact, but it will be close to
the correct one.
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 Conversion factors for some of the English 
system units commonly used in the United 
States for nonscientifi c measurements (for 
example, pounds and inches) are provided 
inside the back cover of this book. 

 Similar problem: 1.45. 

  EXAMPLE 1.6 

 A person’s average daily intake of glucose (a form of sugar) is 0.0833 pound (lb). What 
is this mass in milligrams (mg)? (1 lb 5 453.6 g.) 

  Strategy   The problem can be stated as 

 ? mg 5 0.0833 lb 

 The relationship between pounds and grams is given in the problem. This relationship will 
enable conversion from pounds to grams. A metric conversion is then needed to convert 
grams to milligrams (1 mg 5 1 3 1023 g). Arrange the appropriate conversion factors so 
that pounds and grams cancel and the unit milligrams is obtained in your answer.  

  Solution   The sequence of conversions is 

 pounds ⎯→ grams ⎯→ milligrams 

 Using the following conversion factors 

453.6 g

1 lb
 and 

1 mg

1 3 1023 g 

 we obtain the answer in one step: 

 ? mg 5 0.0833 lb 3
453.6 g

1 lb
3

1 mg

1 3 1023 g
5  3.78 3 104 mg  

  Check   As an estimate, we note that 1 lb is roughly 500 g and that 1 g 5 1000 mg. 
Therefore, 1 lb is roughly 5 3 105 mg. Rounding off 0.0833 lb to 0.1 lb, we get 
5 3 104 mg, which is close to the preceding quantity.  

  Practice Exercise   A roll of aluminum foil has a mass of 1.07 kg. What is its mass in 
pounds?   
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  As Examples 1.7 and 1.8 illustrate, conversion factors can be squared or cubed 
in dimensional analysis. 

      Liquid nitrogen.  

  EXAMPLE 1.7 

 An average adult has 5.2 L of blood. What is the volume of blood in m3? 

  Strategy   The problem can be stated as 

 ? m3 5 5.2 L 

 How many conversion factors are needed for this problem? Recall that 1 L 5 1000 cm3 
and 1 cm 5 1 3 1022 m.  

  Solution   We need two conversion factors here: one to convert liters to cm3 and one to 
convert centimeters to meters: 

1000 cm3

1 L
 and 

1 3 1022 m

1 cm

 Because the second conversion factor deals with length (cm and m) and we want 
volume here, it must therefore be cubed to give 

1 3 1022 m

1 cm
3

1 3 1022 m

1 cm
3

1 3 1022 m

1 cm
5 a1 3 1022 m

1 cm
b3

 This means that 1 cm3 5 1 3 1026 m3. Now we can write 

 ? m3 5 5.2 L 3
1000 cm3

1 L
3 a1 3 1022 m

1 cm
b3

 5 5.2 3 1023 m3  

  Check   From the preceding conversion factors you can show that 1 L 5 1 3 1023 m3. 
Therefore, 5 L of blood would be equal to 5 3 1023 m3, which is close to the answer.  

  Practice Exercise   The volume of a room is 1.08 3 108 dm3. What is the volume in m3?   

 Remember that when a unit is raised to a 
power, any conversion factor you use must 
also be raised to that power. 

(Continued)

  EXAMPLE 1.8 

 Liquid nitrogen is obtained from liquefi ed air and is used to prepare frozen goods and in 
low-temperature research. The density of the liquid at its boiling point (2196°C or 77 K) 
is 0.808 g/cm3. Convert the density to units of kg/m3. 

  Strategy   The problem can be stated as 

 ? kg/m3 5 0.808 g/cm3 

 Two separate conversions are required for this problem: g ⎯→ kg and cm3 ⎯→ m3. 
Recall that 1 kg 5 1000 g and 1 cm 5 1 3 1022 m.  

  Solution   In Example 1.7 we saw that 1 cm3 5 1 3 1026 m3. The conversion factors are 

1 kg

1000 g
 and 

1 cm3

1 3 1026 m3

 Finally, 

 ? kg/m3 5
0.808 g

1 cm3 3
1 kg

1000 g
3

1 cm3

1 3 1026 m3 5 808 kg/m3  



   Key Equations 

 d 5
m

V
(1.1) Equation for density 
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  Check   Because 1 m3 5 1 3 106 cm3, we would expect much more mass in 1 m3 than 
in 1 cm3. Therefore, the answer is reasonable.  

  Practice Exercise   The density of the lightest metal, lithium (Li), is 5.34 3 102 kg/m3. 
Convert the density to g/cm3.  

1.  The study of chemistry involves three basic steps: ob-
servation, representation, and interpretation. Observa-
tion refers to measurements in the macroscopic world;
representation involves the use of shorthand notation
symbols and equations for communication; interpreta-
tions are based on atoms and molecules, which belong
to the microscopic world.

2.   Chemists study matter and the changes it undergoes.
The substances that make up matter have unique physi-
cal properties that can be observed without changing
their identity and unique chemical properties that, when
they are demonstrated, do change the identity of the

 Summary of Facts and Concepts  

substances. Mixtures, whether homogeneous or hetero-
geneous, can be separated into pure components by 
physical means.  

  4.   The simplest substances in chemistry are elements.
Compounds are formed by the chemical combination of
atoms of different elements in fi xed proportions.

  5.   All substances, in principle, can exist in three states:
solid, liquid, and gas. The interconversion between these 
states can be effected by changing the temperature.

  6.   SI units are used to express physical quantities in all
sciences, including chemistry.

  7.   Numbers expressed in scientifi c notation have the form
N 3 10n, where  N  is between 1 and 10, and  n  is a posi-
tive or negative integer. Scientifi c notation helps us
handle very large and very small quantities.    

 Answers to Practice Exercises 

  1.1  96.5 g.  1.2  341 g.  1.3  (a) 621.5°F, (b) 78.3°C, 
(c) 2196°C.  1.4  (a) Two, (b) four, (c) three, (d) two,
(e)e) three or tw  1.5  (a) 26.76 L, (b) 4.4 g,

(c)c) 3 107 dm2, (d) 0.0756 g/mL, (e) 6.69 3 104 m.
1.6  2.36 lb.  1.7  1.08 3 105 m3.  1.8  0.534 g/cm3.    




