

Chapter Outline

- 1.1** Chemistry: A Science for the Twenty-First Century
- 1.2** The Study of Chemistry
- 1.3** The Scientific Method
- 1.4** Classifications of Matter
- 1.5** The Three States of Matter
- 1.6** Physical and Chemical Properties of Matter
- 1.7** Measurement
- 1.8** Handling Numbers
- 1.9** Dimensional Analysis in Solving Problems

A Look Ahead

- We begin with a brief introduction to the study of chemistry and describe its role in our modern society. (1.1 and 1.2)
- Next, we become familiar with the scientific method, which is a systematic approach to research in all scientific disciplines. (1.3)
- We define matter and note that a pure substance can either be an element or a compound. We distinguish between a homogeneous mixture and a heterogeneous mixture. We also learn that, in principle, all matter can exist in one of three states: solid, liquid, and gas. (1.4 and 1.5)
- To characterize a substance, we need to know its physical properties, which can be observed without changing its identity and chemical properties, which can be demonstrated only by chemical changes. (1.6)
- Being an experimental science, chemistry involves measurements. We learn the basic SI units and use the SI-derived units for quantities like volume and density. We also become familiar with the three temperature scales: Celsius, Fahrenheit, and Kelvin. (1.7)
- Chemical calculations often involve very large or very small numbers and a convenient way to deal with these numbers is the scientific notation. In calculations or measurements, every quantity must show the proper number of significant figures, which are the meaningful digits. (1.8)
- Finally, we learn that dimensional analysis is useful in chemical calculations. By carrying the units through the entire sequence of calculations, all the units will cancel except the desired one. (1.9)

Chemistry is an active, evolving science that has vital importance to our world, in both the realm of nature and the realm of society. Its roots are ancient, but as we will see, chemistry is every bit a modern science.

We will begin our study of chemistry at the macroscopic level, where we can see and measure the materials of which our world is made. In this chapter, we will discuss the scientific method, which provides the framework for research not only in chemistry but in all other sciences as well. Next we will discover how scientists define and characterize matter. Then we will spend some time learning how to handle numerical results of chemical measurements and solve numerical problems. In Chapter 2, we will begin to explore the microscopic world of atoms and molecules.

The Chinese characters for chemistry mean "The study of change."

1.1 Chemistry: A Science for the Twenty-First Century

Chemistry is *the study of matter and the changes it undergoes*. Chemistry is often called the central science, because a basic knowledge of chemistry is essential for students of biology, physics, geology, ecology, and many other subjects. Indeed, it is central to our way of life; without it, we would be living shorter lives in what we would consider primitive conditions, without automobiles, electricity, computers, CDs, and many other everyday conveniences.

Although chemistry is an ancient science, its modern foundation was laid in the nineteenth century, when intellectual and technological advances enabled scientists to break down substances into ever smaller components and consequently to explain many of their physical and chemical characteristics. The rapid development of increasingly sophisticated technology throughout the twentieth century has given us even greater means to study things that cannot be seen with the naked eye. Using computers and special microscopes, for example, chemists can analyze the structure of atoms and molecules—the fundamental units on which the study of chemistry is based—and design new substances with specific properties, such as drugs and environmentally friendly consumer products.

As we enter the twenty-first century, it is fitting to ask what part the central science will have in this century. Almost certainly, chemistry will continue to play a pivotal role in all areas of science and technology. Before plunging into the study of matter and its transformation, let us consider some of the frontiers that chemists are currently exploring (Figure 1.1). Whatever your reasons for taking general chemistry, a good knowledge of the subject will better enable you to appreciate its impact on society and on you as an individual.

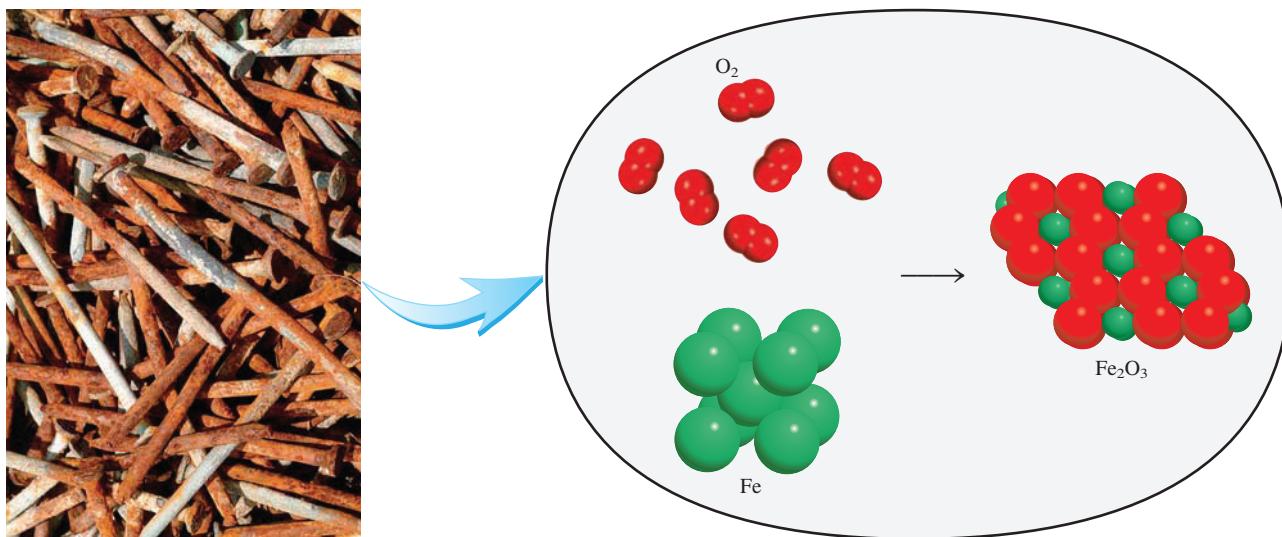


Figure 1.2 A simplified molecular view of rust (Fe_2O_3) formation from iron (Fe) atoms and oxygen molecules (O_2). In reality the process requires water, and rust also contains water molecules.

1.2 The Study of Chemistry

Compared with other subjects, chemistry is commonly believed to be more difficult, at least at the introductory level. There is some justification for this perception; for one thing, chemistry has a very specialized vocabulary. However, even if this is your first course in chemistry, you already have more familiarity with the subject than you may realize. In everyday conversations we hear words that have a chemical connection, although they may not be used in the scientifically correct sense. Examples are “electronic,” “quantum leap,” “equilibrium,” “catalyst,” “chain reaction,” and “critical mass.” Moreover, if you cook, then you are a practicing chemist! From experience gained in the kitchen, you know that oil and water do not mix and that boiling water left on the stove will evaporate. You apply chemical and physical principles when you use baking soda to leaven bread, choose a pressure cooker to shorten the time it takes to prepare soup, add meat tenderizer to a pot roast, squeeze lemon juice over sliced pears to prevent them from turning brown or over fish to minimize its odor, and add vinegar to the water in which you are going to poach eggs. Every day we observe such changes without thinking about their chemical nature. The purpose of this course is to make you think like a chemist, to look at the *macroscopic world*—the things we can see, touch, and measure directly—and visualize the particles and events of the *microscopic world* that we cannot experience without modern technology and our imaginations.

At first some students find it confusing that their chemistry instructor and textbook seem to be continually shifting back and forth between the macroscopic and microscopic worlds. Just keep in mind that the data for chemical investigations most often come from observations of large-scale phenomena, but the explanations frequently lie in the unseen and partially imagined microscopic world of atoms and molecules. In other words, chemists often see one thing (in the macroscopic world) and think another (in the microscopic world). Looking at the rusted nails in Figure 1.2, for example, a chemist might think about the basic properties of individual atoms of iron and how these units interact with other atoms and molecules to produce the observed change.

1.4 Classifications of Matter

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air). Thus, everything in the universe has a “chemical” connection.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

Substances and Mixtures

A **substance** is *a form of matter that has a definite (constant) composition and distinct properties*. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties. A **mixture** is *a combination of two or more substances in which the substances retain their distinct identities*. Some familiar examples are air, soft drinks, milk, and cement. Mixtures do not have constant composition. Therefore, samples of air collected in different cities would probably differ in composition because of differences in altitude, pollution, and so on.

Mixtures are either homogeneous or heterogeneous. When a spoonful of sugar dissolves in water we obtain a **homogeneous mixture** in which *the composition of the mixture is the same throughout*. If sand is mixed with iron filings, however, the sand grains and the iron filings remain separate (Figure 1.4). This type of mixture is called a **heterogeneous mixture** because *the composition is not uniform*.

Any mixture, whether homogeneous or heterogeneous, can be created and then separated by physical means into pure components without changing the identities of the components. Thus, sugar can be recovered from a water solution by heating the solution and evaporating it to dryness. Condensing the vapor will give us back the water component. To separate the iron-sand mixture, we can use a magnet to remove the iron filings from the sand, because sand is not attracted to the magnet [see Figure 1.4(b)]. After separation, the components of the mixture will have the same composition and properties as they did to start with.

Elements and Compounds

Substances can be either elements or compounds. An **element** is *a substance that cannot be separated into simpler substances by chemical means*. 94 elements can be found as naturally occurring on Earth.

(a)

(b)

Figure 1.4 (a) The mixture contains iron filings and sand. (b) A magnet separates the iron filings from the mixture. The same technique is used on a larger scale to separate iron and steel from nonmagnetic objects such as aluminum, glass, and plastics.

TABLE 1.1 Some Common Elements and Their Symbols

Name	Symbol	Name	Symbol	Name	Symbol
Aluminum	Al	Fluorine	F	Oxygen	O
Arsenic	As	Gold	Au	Phosphorus	P
Barium	Ba	Hydrogen	H	Platinum	Pt
Bismuth	Bi	Iodine	I	Potassium	K
Bromine	Br	Iron	Fe	Silicon	Si
Calcium	Ca	Lead	Pb	Silver	Ag
Carbon	C	Magnesium	Mg	Sodium	Na
Chlorine	Cl	Manganese	Mn	Sulfur	S
Chromium	Cr	Mercury	Hg	Tin	Sn
Cobalt	Co	Nickel	Ni	Tungsten	W
Copper	Cu	Nitrogen	N	Zinc	Zn

Others have been created by scientists via nuclear processes, which are the subject of Chapter 23 of this text.

For convenience, chemists use symbols of one or two letters to represent the elements. The first letter of a symbol is *always* capitalized, but any following letters are not. For example, Co is the symbol for the element cobalt, whereas CO is the formula for the carbon monoxide molecule. Table 1.1 shows the names and symbols of some of the more common elements; a complete list of the elements and their symbols appears inside the front cover of this book. The symbols of some elements are derived from their Latin names—for example, Au from *aurum* (gold), Fe from *ferrum* (iron), and Na from *natrium* (sodium)—whereas most of them come from their English names. Appendix 1 gives the origin of the names and lists the discoverers of most of the elements.

Atoms of most elements can interact with one another to form compounds. Hydrogen gas, for example, burns in oxygen gas to form water, which has properties that are distinctly different from those of the starting materials. Water is made up of two parts hydrogen and one part oxygen. This composition does not change, regardless of whether the water comes from a faucet in the United States, a lake in Outer Mongolia, or the ice caps on Mars. Thus, water is a **compound**, *a substance composed of atoms of two or more elements chemically united in fixed proportions*. Unlike mixtures, compounds can be separated only by chemical means into their pure components.

The relationships among elements, compounds, and other categories of matter are summarized in Figure 1.5.

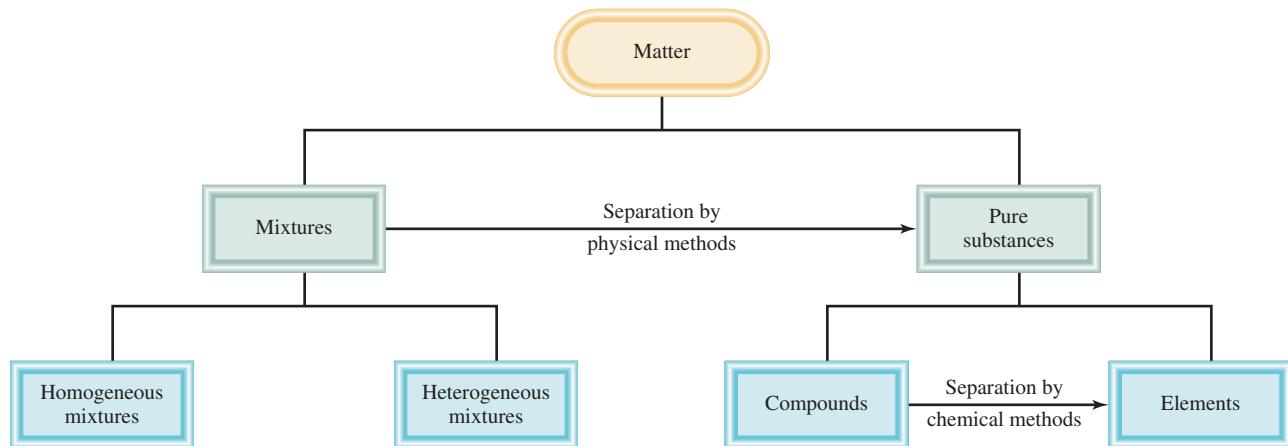


Figure 1.5 Classification of matter.

1.5 The Three States of Matter

All substances, at least in principle, can exist in three states: solid, liquid, and gas. As Figure 1.6 shows, gases differ from liquids and solids in the distances between the molecules. In a solid, molecules are held close together in an orderly fashion with little freedom of motion. Molecules in a liquid are close together but are not held so rigidly in position and can move past one another. In a gas, the molecules are separated by distances that are large compared with the size of the molecules.

The three states of matter can be interconverted without changing the composition of the substance. Upon heating, a solid (for example, ice) will melt to form a liquid (water). (The temperature at which this transition occurs is called the *melting point*.) Further heating will convert the liquid into a gas. (This conversion takes place at the *boiling point* of the liquid.) On the other hand, cooling a gas will cause it to condense into a liquid. When the liquid is cooled further, it will freeze into the solid form.

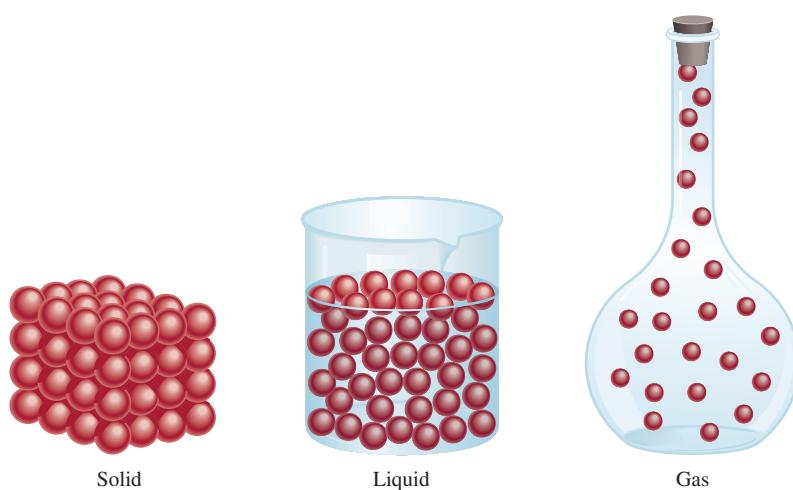


Figure 1.6 Microscopic views of a solid, a liquid, and a gas.

Figure 1.7 The three states of matter. A hot poker changes ice into water and steam.

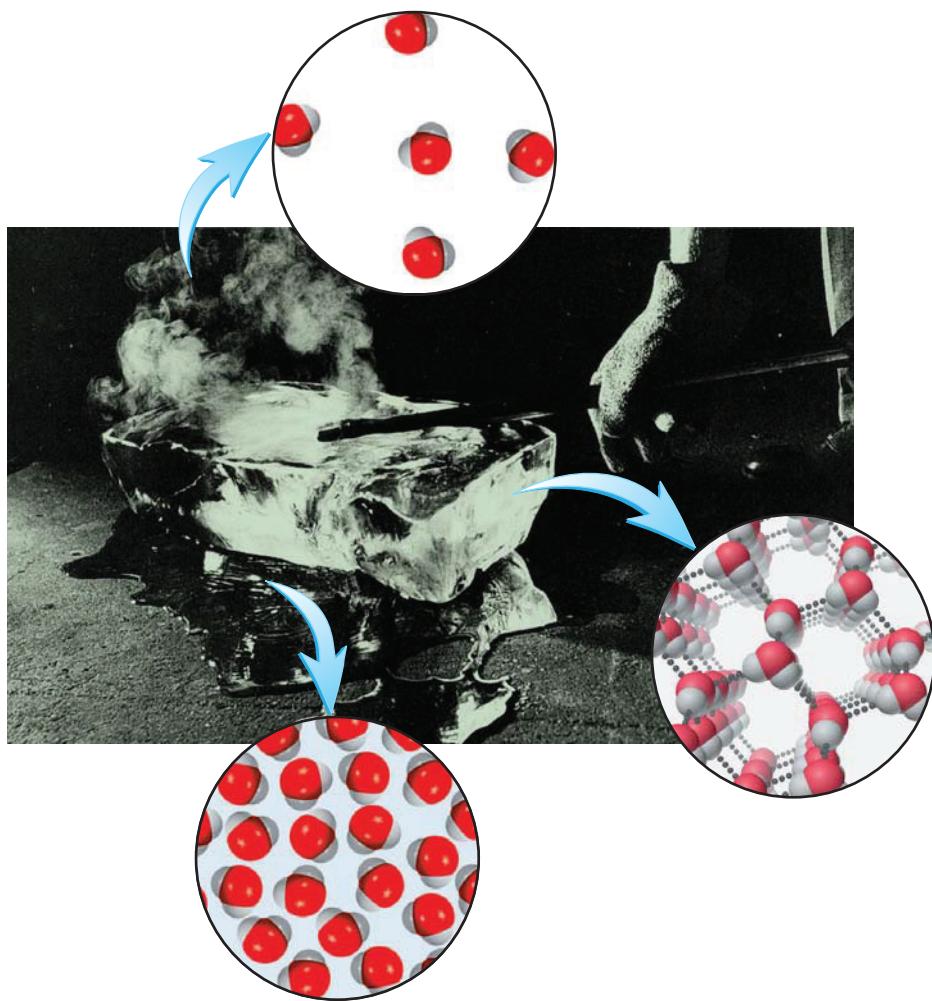


Figure 1.7 shows the three states of water. Note that the properties of water are unique among common substances in that the molecules in the liquid state are more closely packed than those in the solid state.

1.6 Physical and Chemical Properties of Matter

Substances are identified by their properties as well as by their composition. Color, melting point, and boiling point are physical properties. A *physical property* can be measured and observed without changing the composition or identity of a substance.

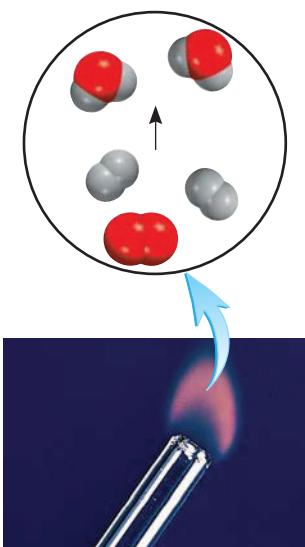
For example, we can measure the melting point of ice by heating a block of ice and recording the temperature at which the ice is converted to water. Water differs from ice only in appearance, not in composition, so this is a physical change; we can freeze the water to recover the original ice. Therefore, the melting point of a substance is a physical property. Similarly, when we say that helium gas is lighter than air, we are referring to a physical property.

On the other hand, the statement “Hydrogen gas burns in oxygen gas to form water” describes a **chemical property** of hydrogen, because *to observe this property we must carry out a chemical change*, in this case burning. After the change, the original chemical substance, the hydrogen gas, will have vanished, and all that will be left is a different chemical substance—water. We *cannot* recover the hydrogen from the water by means of a physical change, such as boiling or freezing.

Every time we hard-boil an egg, we bring about a chemical change. When subjected to a temperature of about 100°C, the yolk and the egg white undergo changes that alter not only their physical appearance but their chemical makeup as well. When eaten, the egg is changed again, by substances in our bodies called *enzymes*. This digestive action is another example of a chemical change. What happens during digestion depends on the chemical properties of both the enzymes and the food.

All measurable properties of matter fall into one of two additional categories: extensive properties and intensive properties. The measured value of an **extensive property** depends on how much matter is being considered. **Mass**, which is the quantity of matter in a given sample of a substance, is an extensive property. More matter means more mass. Values of the same extensive property can be added together. For example, two copper pennies will have a combined mass that is the sum of the masses of each penny, and the length of two tennis courts is the sum of the lengths of each tennis court. **Volume**, defined as *length cubed*, is another extensive property. The value of an extensive quantity depends on the amount of matter.

The measured value of an **intensive property** does not depend on how much matter is being considered. **Density**, defined as the mass of an object divided by its volume, is an intensive property. So is temperature. Suppose that we have two beakers of water at the same temperature. If we combine them to make a single quantity of water in a larger beaker, the temperature of the larger quantity of water will be the same as it was in two separate beakers. Unlike mass, length, and volume, temperature and other intensive properties are not additive.



Hydrogen burning in air to form water.

1.7 Measurement

The measurements chemists make are often used in calculations to obtain other related quantities. Different instruments enable us to measure a substance's properties: The meterstick measures length or scale; the buret, the pipet, the graduated cylinder, and the volumetric flask measure volume (Figure 1.8); the balance measures mass; the thermometer measures temperature. These instruments provide measurements of **macroscopic properties**, which *can be determined directly*. **Microscopic properties**, on the atomic or molecular scale, must be determined by an *indirect method*, as we will see in Chapter 2.

A measured quantity is usually written as a number with an appropriate unit. To say that the distance between New York and San Francisco by car along a certain route is 5166 is meaningless. We must specify that the distance is 5166 kilometers. The same is true in chemistry; units are essential to stating measurements correctly.

SI Units

For many years, scientists recorded measurements in *metric units*, which are related decimally, that is, by powers of 10. In 1960, however, the General Conference of Weights and Measures, the international authority on units, proposed a revised metric system called the **International System of Units** (abbreviated **SI**, from the French *Système Internationale d'Unités*). Table 1.2 shows the seven SI base units. All other units of measurement can be derived from these base units. Like metric units, SI units are modified in decimal fashion by a series of prefixes, as shown in Table 1.3. We will use both metric and SI units in this book.

Measurements that we will utilize frequently in our study of chemistry include time, mass, volume, density, and temperature.

Figure 1.8 Some common measuring devices found in a chemistry laboratory. These devices are not drawn to scale relative to one another. We will discuss the uses of these measuring devices in Chapter 4.

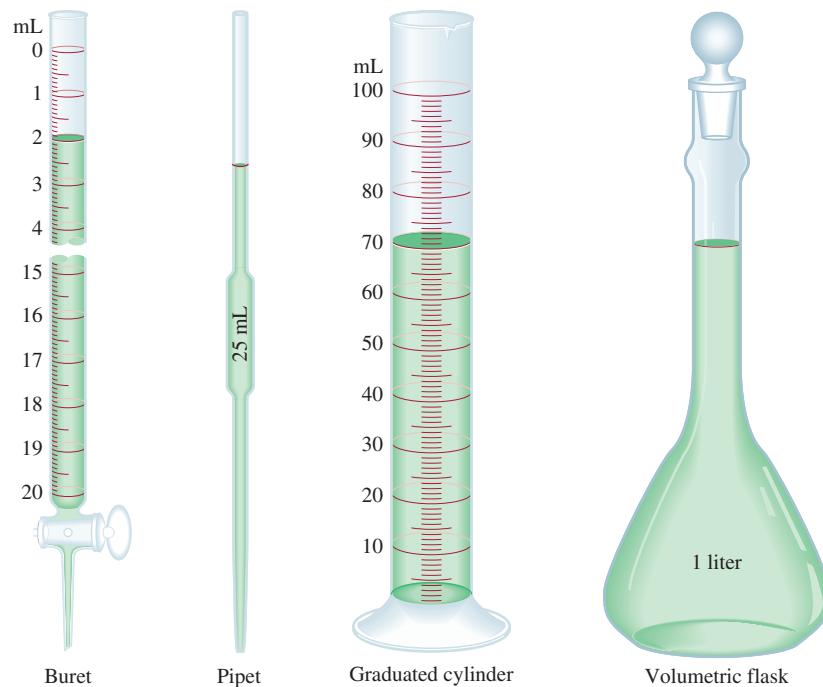


TABLE 1.2 SI Base Units

Base Quantity	Name of Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electrical current	ampere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

TABLE 1.3 Prefixes Used with SI Units

Prefix	Symbol	Meaning	Example
tera-	T	1,000,000,000,000, or 10^{12}	1 terameter (Tm) = 1×10^{12} m
giga-	G	1,000,000,000, or 10^9	1 gigameter (Gm) = 1×10^9 m
mega-	M	1,000,000, or 10^6	1 megameter (Mm) = 1×10^6 m
kilo-	k	1,000, or 10^3	1 kilometer (km) = 1×10^3 m
deci-	d	1/10, or 10^{-1}	1 decimeter (dm) = 0.1 m
centi-	c	1/100, or 10^{-2}	1 centimeter (cm) = 0.01 m
milli-	m	1/1,000, or 10^{-3}	1 millimeter (mm) = 0.001 m
micro-	μ	1/1,000,000, or 10^{-6}	1 micrometer (μ m) = 1×10^{-6} m
nano-	n	1/1,000,000,000, or 10^{-9}	1 nanometer (nm) = 1×10^{-9} m
pico-	p	1/1,000,000,000,000, or 10^{-12}	1 picometer (pm) = 1×10^{-12} m

Note that a metric prefix simply represents a number:

$$1 \text{ mm} = 1 \times 10^{-3} \text{ m}$$

An astronaut jumping on the surface of the moon.

Mass and Weight

The terms “mass” and “weight” are often used interchangeably, although, strictly speaking, they are different quantities. Whereas mass is a measure of the amount of matter in an object, *weight*, technically speaking, is *the force that gravity exerts on an object*. An apple that falls from a tree is pulled downward by Earth’s gravity. The mass of the apple is constant and does not depend on its location, but its weight does. For example, on the surface of the moon the apple would weigh only one-sixth what it does on Earth, because the moon’s gravity is only one-sixth that of Earth. The moon’s smaller gravity enabled astronauts to jump about rather freely on its surface despite their bulky suits and equipment. Chemists are interested primarily in mass, which can be determined readily with a balance; the process of measuring mass, oddly, is called *weighing*.

The SI unit of mass is the *kilogram* (kg). Unlike the units of length and time, which are based on natural processes that can be repeated by scientists anywhere, the kilogram is defined in terms of a particular object (Figure 1.9). In chemistry, however, the smaller *gram* (g) is more convenient:

$$1 \text{ kg} = 1000 \text{ g} = 1 \times 10^3 \text{ g}$$

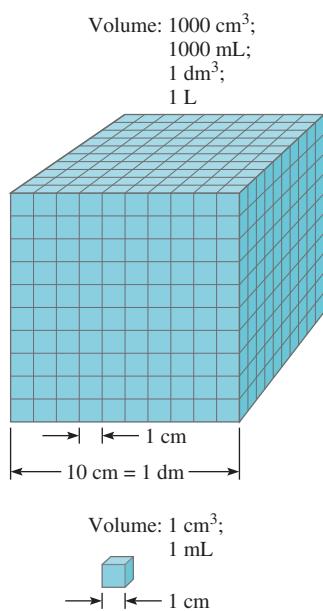


Figure 1.10 Comparison of two volumes, 1 mL and 1000 mL.

Volume

The SI unit of length is the *meter* (m), and the SI-derived unit for volume is the *cubic meter* (m³). Generally, however, chemists work with much smaller volumes, such as the cubic centimeter (cm³) and the cubic decimeter (dm³):

$$1 \text{ cm}^3 = (1 \times 10^{-2} \text{ m})^3 = 1 \times 10^{-6} \text{ m}^3$$

$$1 \text{ dm}^3 = (1 \times 10^{-1} \text{ m})^3 = 1 \times 10^{-3} \text{ m}^3$$

Another common unit of volume is the liter (L). A *liter* is the volume occupied by one cubic decimeter. One liter of volume is equal to 1000 milliliters (mL) or 1000 cm³:

$$1 \text{ L} = 1000 \text{ mL}$$

$$= 1000 \text{ cm}^3$$

$$= 1 \text{ dm}^3$$

and one milliliter is equal to one cubic centimeter:

$$1 \text{ mL} = 1 \text{ cm}^3$$

Figure 1.10 compares the relative sizes of two volumes. Even though the liter is not an SI unit, volumes are usually expressed in liters and milliliters.

Density

The equation for density is

$$\text{density} = \frac{\text{mass}}{\text{volume}}$$

or

$$d = \frac{m}{V} \quad (1.1)$$

where *d*, *m*, and *V* denote density, mass, and volume, respectively. Because density is an intensive property and does not depend on the quantity of mass present, for a given substance the ratio of mass to volume always remains the same; in other words, *V* increases as *m* does. Density usually decreases with temperature.

The SI-derived unit for density is the kilogram per cubic meter (kg/m³). This unit is awkwardly large for most chemical applications. Therefore, grams per cubic centimeter (g/cm³) and its equivalent, grams per milliliter (g/mL), are more commonly used for solid and liquid densities. Because gas densities are often very low, we express them in units of grams per liter (g/L):

$$1 \text{ g/cm}^3 = 1 \text{ g/mL} = 1000 \text{ kg/m}^3$$

$$1 \text{ g/L} = 0.001 \text{ g/mL}$$

TABLE 1.4

Densities of Some Substances at 25°C

Substance	Density (g/cm ³)
Air*	0.001
Ethanol	0.79
Water	1.00
Mercury	13.6
Table salt	2.2
Iron	7.9
Gold	19.3
Osmium [†]	22.6

*Measured at 1 atmosphere.

[†]Osmium (Os) is the densest element known.

Table 1.4 lists the densities of several substances.

Examples 1.1 and 1.2 show density calculations.

EXAMPLE 1.1

Gold is a precious metal that is chemically unreactive. It is used mainly in jewelry, dentistry, and electronic devices. A piece of gold ingot with a mass of 301 g has a volume of 15.6 cm³. Calculate the density of gold.

Solution We are given the mass and volume and asked to calculate the density. Therefore, from Equation (1.1), we write

$$\begin{aligned} d &= \frac{m}{V} \\ &= \frac{301 \text{ g}}{15.6 \text{ cm}^3} \\ &= 19.3 \text{ g/cm}^3 \end{aligned}$$

Practice Exercise A piece of platinum metal with a density of 21.5 g/cm³ has a volume of 4.49 cm³. What is its mass?

Gold bars.

Similar problems: 1.21, 1.22.

EXAMPLE 1.2

The density of mercury, the only metal that is a liquid at room temperature, is 13.6 g/mL. Calculate the mass of 5.50 mL of the liquid.

Solution We are given the density and volume of a liquid and asked to calculate the mass of the liquid. We rearrange Equation (1.1) to give

$$\begin{aligned} m &= d \times V \\ &= 13.6 \frac{\text{g}}{\text{mL}} \times 5.50 \text{ mL} \\ &= 74.8 \text{ g} \end{aligned}$$

Practice Exercise The density of sulfuric acid in a certain car battery is 1.41 g/mL. Calculate the mass of 242 mL of the liquid.

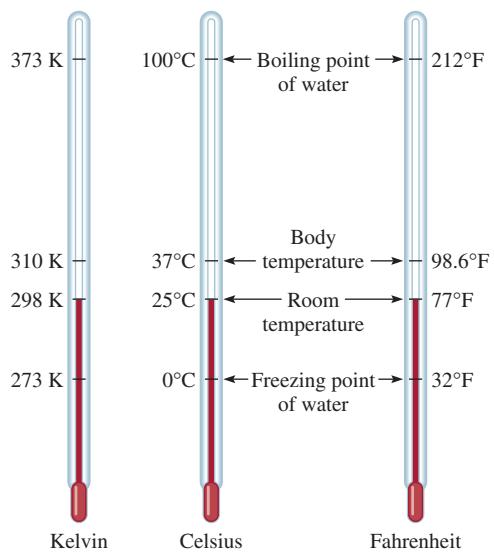
Mercury.

Temperature Scales

Three temperature scales are currently in use. Their units are °F (degrees Fahrenheit), °C (degrees Celsius), and K (kelvin). The Fahrenheit scale, which is the most commonly used scale in the United States outside the laboratory, defines the normal freezing and boiling points of water to be exactly 32°F and 212°F, respectively. The Celsius scale divides the range between the freezing point (0°C) and boiling point (100°C) of water into 100 degrees. As Table 1.2 shows, the **kelvin** is the *SI base unit of temperature*: it is the *absolute* temperature scale. By absolute we mean that the zero on the Kelvin scale, denoted by 0 K, is the lowest temperature that can be attained theoretically. On the other hand, 0°F and 0°C are based on the behavior of an arbitrarily chosen substance, water. Figure 1.11 compares the three temperature scales.

Note that the Kelvin scale does not have the degree sign. Also, temperatures expressed in kelvins can never be negative.

Figure 1.11 Comparison of the three temperature scales: Celsius, and Fahrenheit, and the absolute (Kelvin) scales. Note that there are 100 divisions, or 100 degrees, between the freezing point and the boiling point of water on the Celsius scale, and there are 180 divisions, or 180 degrees, between the same two temperature limits on the Fahrenheit scale. The Celsius scale was formerly called the centigrade scale.



Both the Celsius and the Kelvin scales have units of equal magnitude; that is, one degree Celsius is equivalent to one kelvin. Experimental studies have shown that absolute zero on the Kelvin scale is equivalent to -273.15°C on the Celsius scale. Thus, we can use the following equation to convert degrees Celsius to kelvin:

$$? \text{ K} = (\text{ }^{\circ}\text{C} + 273.15\text{ }^{\circ}\text{C}) \frac{1 \text{ K}}{1 \text{ }^{\circ}\text{C}} \quad (1.4)$$

We will frequently find it necessary to convert between degrees Celsius and kelvin.

1.8 Handling Numbers

Having surveyed some of the units used in chemistry, we now turn to techniques for handling numbers associated with measurements: scientific notation and significant figures.

Scientific Notation

Chemists often deal with numbers that are either extremely large or extremely small. For example, in 1 g of the element hydrogen there are roughly

602,200,000,000,000,000,000,000

hydrogen atoms. Each hydrogen atom has a mass of only

These numbers are cumbersome to handle, and it is easy to make mistakes when using them in arithmetic computations. Consider the following multiplication:

$$0.000000056 \times 0.00000000048 = 0.00000000000000002688$$

It would be easy for us to miss one zero or add one more zero after the decimal point. Consequently, when working with very large and very small numbers, we use a system called *scientific notation*. Regardless of their magnitude, all numbers can be expressed in the form

$$N \times 10^n$$

where N is a number between 1 and 10 and n , the exponent, is a positive or negative integer (whole number). Any number expressed in this way is said to be written in scientific notation.

Suppose that we are given a certain number and asked to express it in scientific notation. Basically, this assignment calls for us to find n . We count the number of places that the decimal point must be moved to give the number N (which is between 1 and 10). If the decimal point has to be moved to the left, then n is a positive integer; if it has to be moved to the right, n is a negative integer. The following examples illustrate the use of scientific notation:

(1) Express 568.762 in scientific notation:

$$568.762 = 5.68762 \times 10^2$$

Note that the decimal point is moved to the left by two places and $n = 2$.

(2) Express 0.00000772 in scientific notation:

$$0.00000772 = 7.72 \times 10^{-6}$$

Here the decimal point is moved to the right by six places and $n = -6$.

Keep in mind the following two points. First, $n = 0$ is used for numbers that are not expressed in scientific notation. For example, 74.6×10^0 ($n = 0$) is equivalent to 74.6. Second, the usual practice is to omit the superscript when $n = 1$. Thus, the scientific notation for 74.6 is 7.46×10 and not 7.46×10^1 .

Any number raised to the power zero is equal to one.

Next, we consider how scientific notation is handled in arithmetic operations.

Addition and Subtraction

To add or subtract using scientific notation, we first write each quantity—say N_1 and N_2 —with the same exponent n . Then we combine N_1 and N_2 ; the exponents remain the same. Consider the following examples:

$$\begin{aligned}(7.4 \times 10^3) + (2.1 \times 10^3) &= 9.5 \times 10^3 \\ (4.31 \times 10^4) + (3.9 \times 10^3) &= (4.31 \times 10^4) + (0.39 \times 10^4) \\ &= 4.70 \times 10^4 \\ (2.22 \times 10^{-2}) - (4.10 \times 10^{-3}) &= (2.22 \times 10^{-2}) - (0.41 \times 10^{-2}) \\ &= 1.81 \times 10^{-2}\end{aligned}$$

Multiplication and Division

To multiply numbers expressed in scientific notation, we multiply N_1 and N_2 in the usual way, but *add* the exponents together. To divide using scientific notation, we divide N_1 and N_2 as usual and subtract the exponents. The following examples show how these operations are performed:

$$\begin{aligned}(8.0 \times 10^4) \times (5.0 \times 10^2) &= (8.0 \times 5.0)(10^{4+2}) \\ &= 40 \times 10^6 \\ &= 4.0 \times 10^7 \\ (4.0 \times 10^{-5}) \times (7.0 \times 10^3) &= (4.0 \times 7.0)(10^{-5+3}) \\ &= 28 \times 10^{-2} \\ &= 2.8 \times 10^{-1} \\ \frac{6.9 \times 10^7}{3.0 \times 10^{-5}} &= \frac{6.9}{3.0} \times 10^{7-(-5)} \\ &= 2.3 \times 10^{12} \\ \frac{8.5 \times 10^4}{5.0 \times 10^9} &= \frac{8.5}{5.0} \times 10^{4-9} \\ &= 1.7 \times 10^{-5}\end{aligned}$$

Significant Figures

Except when all the numbers involved are integers (for example, in counting the number of students in a class), it is often impossible to obtain the exact value of the quantity under investigation. For this reason, it is important to indicate the margin of error in a measurement by clearly indicating the number of *significant figures*, which are *the meaningful digits in a measured or calculated quantity*. When significant figures are used, the last digit is understood to be uncertain. For example, we might measure the volume of a given amount of liquid using a graduated cylinder with a scale that gives an uncertainty of 1 mL in the measurement. If the volume is found to be 6 mL, then the actual volume is in the range of 5 mL to 7 mL. We represent

the volume of the liquid as (6 ± 1) mL. In this case, there is only one significant figure (the digit 6) that is uncertain by either plus or minus 1 mL. For greater accuracy, we might use a graduated cylinder that has finer divisions, so that the volume we measure is now uncertain by only 0.1 mL. If the volume of the liquid is now found to be 6.0 mL, we may express the quantity as (6.0 ± 0.1) mL, and the actual value

Figure 1.12 A single-pan balance.

is somewhere between 5.9 mL and 6.1 mL. We can further improve the measuring device and obtain more significant figures, but in every case, the last digit is always uncertain; the amount of this uncertainty depends on the particular measuring device we use.

Figure 1.12 shows a modern balance. Balances such as this one are available in many general chemistry laboratories; they readily measure the mass of objects to four decimal places. Therefore, the measured mass typically will have four significant figures (for example, 0.8642 g) or more (for example, 3.9745 g). Keeping track of the number of significant figures in a measurement such as mass ensures that calculations involving the data will reflect the precision of the measurement.

Guidelines for Using Significant Figures

We must always be careful in scientific work to write the proper number of significant figures. In general, it is fairly easy to determine how many significant figures a number has by following these rules:

1. Any digit that is not zero is significant. Thus, 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.
2. Zeros between nonzero digits are significant. Thus, 606 m contains three significant figures, 40,501 kg contains five significant figures, and so on.
3. Zeros to the left of the first nonzero digit are not significant. Their purpose is to indicate the placement of the decimal point. For example, 0.08 L contains one significant figure, 0.0000349 g contains three significant figures, and so on.
4. If a number is greater than 1, then all the zeros written to the right of the decimal point count as significant figures. Thus, 2.0 mg has two significant figures, 40.062 mL has five significant figures, and 3.040 dm has four significant figures. If a number is less than 1, then only the zeros that are at the end of the number and the zeros that are between nonzero digits are significant. This means that 0.090 kg has two significant figures, 0.3005 L has four significant figures, 0.00420 min has three significant figures, and so on.
5. For numbers that do not contain decimal points, the trailing zeros (that is, zeros after the last nonzero digit) may or may not be significant. Thus, 400 cm may have one significant figure (the digit 4), two significant figures (40), or three significant figures (400). We cannot know which is correct without more information. By using scientific notation, however, we avoid this ambiguity. In this particular case, we can express the number 400 as 4×10^2 for one significant figure, 4.0×10^2 for two significant figures, or 4.00×10^2 for three significant figures.

Example 1.4 shows the determination of significant figures.

EXAMPLE 1.4

Determine the number of significant figures in the following measurements: (a) 478 cm, (b) 6.01 g, (c) 0.825 m, (d) 0.043 kg, (e) 1.310×10^{22} atoms, (f) 7000 mL.

Solution (a) Three, because each digit is a nonzero digit. (b) Three, because zeros between nonzero digits are significant. (c) Three, because zeros to the left of the first nonzero digit do not count as significant figures. (d) Two. Same reason as in (c). (e) Four, because the number is greater than one so all the zeros written to the right of the decimal point count as significant figures. (f) This is an ambiguous case. The number of significant figures may be four (7.000×10^3), three (7.00×10^3), two (7.0×10^3),

(Continued)

or one (7×10^3). This example illustrates why scientific notation must be used to show the proper number of significant figures.

Similar problems: 1.33, 1.34.

Practice Exercise Determine the number of significant figures in each of the following measurements: (a) 24 mL, (b) 3001 g, (c) 0.0320 m³, (d) 6.4×10^4 molecules, (e) 560 kg.

A second set of rules specifies how to handle significant figures in calculations.

1. In addition and subtraction, the answer cannot have more digits to the right of the decimal point than either of the original numbers. Consider these examples:

$$\begin{array}{r} 89.332 \\ + 1.1 \\ \hline 90.432 \end{array} \leftarrow \text{one digit after the decimal point}$$

90.432 ← round off to 90.4

$$\begin{array}{r} 2.097 \\ - 0.12 \\ \hline 1.977 \end{array} \leftarrow \text{two digits after the decimal point}$$

1.977 ← round off to 1.98

The rounding-off procedure is as follows. To round off a number at a certain point we simply drop the digits that follow if the first of them is less than 5. Thus, 8.724 rounds off to 8.72 if we want only two digits after the decimal point. If the first digit following the point of rounding off is equal to or greater than 5, we add 1 to the preceding digit. Thus, 8.727 rounds off to 8.73, and 0.425 rounds off to 0.43.

2. In multiplication and division, the number of significant figures in the final product or quotient is determined by the original number that has the *smallest* number of significant figures. The following examples illustrate this rule:

$$2.8 \times 4.5039 = 12.61092 \leftarrow \text{round off to 13}$$

$$\begin{array}{r} 6.85 \\ \hline 112.04 \end{array} = 0.0611388789 \leftarrow \text{round off to 0.0611}$$

3. Keep in mind that *exact numbers* obtained from definitions or by counting numbers of objects can be considered to have an infinite number of significant figures. For example, the inch is defined to be exactly 2.54 centimeters; that is,

$$1 \text{ in} = 2.54 \text{ cm}$$

Thus, the “2.54” in the equation should not be interpreted as a measured number with three significant figures. In calculations involving conversion between “in” and “cm,” we treat both “1” and “2.54” as having an infinite number of significant figures. Similarly, if an object has a mass of 5.0 g, then the mass of nine such objects is

$$5.0 \text{ g} \times 9 = 45 \text{ g}$$

The answer has two significant figures because 5.0 g has two significant figures. The number 9 is exact and does not determine the number of significant figures. Example 1.5 shows how significant figures are handled in arithmetic operations.

EXAMPLE 1.5

Carry out the following arithmetic operations to the correct number of significant figures: (a) 11,254.1 g + 0.1983 g, (b) 66.59 L – 3.113 L, (c) 8.16 m × 5.1355, (d) 0.0154 kg ÷ 88.3 mL, (e) 2.64×10^3 cm + 3.27×10^2 cm.

(Continued)

Solution In addition and subtraction, the number of decimal places in the answer is determined by the number having the lowest number of decimal places. In multiplication and division, the significant number of the answer is determined by the number having the smallest number of significant figures.

(a)
$$\begin{array}{r} 11,254.1 \text{ g} \\ + 0.1983 \text{ g} \\ \hline 11,254.2983 \text{ g} \end{array} \leftarrow \text{round off to } 11,254.3 \text{ g}$$

(b)
$$\begin{array}{r} 66.59 \text{ L} \\ - 3.113 \text{ L} \\ \hline 63.477 \text{ L} \end{array} \leftarrow \text{round off to } 63.48 \text{ L}$$

(c) $8.16 \text{ m} \times 5.1355 = 41.90568 \text{ m} \leftarrow \text{round off to } 41.9 \text{ m}$

(d)
$$\begin{array}{r} 0.0154 \text{ kg} \\ \hline 88.3 \text{ mL} \end{array} = 0.000174405436 \text{ kg/mL} \leftarrow \text{round off to } 0.000174 \text{ kg/mL}$$

or $1.74 \times 10^{-4} \text{ kg/mL}$

(e) First we change $3.27 \times 10^2 \text{ cm}$ to $0.327 \times 10^3 \text{ cm}$ and then carry out the addition $(2.64 \text{ cm} + 0.327 \text{ cm}) \times 10^3$. Following the procedure in (a), we find the answer is $2.97 \times 10^3 \text{ cm}$.

Practice Exercise Carry out the following arithmetic operations and round off the answers to the appropriate number of significant figures: (a) $26.5862 \text{ L} + 0.17 \text{ L}$, (b) $9.1 \text{ g} - 4.682 \text{ g}$, (c) $7.1 \times 10^4 \text{ dm} \times 2.2654 \times 10^2 \text{ dm}$, (d) $6.54 \text{ g} \div 86.5542 \text{ mL}$, (e) $(7.55 \times 10^4 \text{ m}) - (8.62 \times 10^3 \text{ m})$.

The preceding rounding-off procedure applies to one-step calculations. In *chain calculations*, that is, calculations involving more than one step, we can get a different answer depending on how we round off. Consider the following two-step calculations:

$$\begin{array}{ll} \text{First step:} & A \times B = C \\ \text{Second step:} & C \times D = E \end{array}$$

Let's suppose that $A = 3.66$, $B = 8.45$, and $D = 2.11$. Depending on whether we round off C to three or four significant figures, we obtain a different number for E :

Method 1	Method 2
$3.66 \times 8.45 = 30.9$	$3.66 \times 8.45 = 30.93$
$30.9 \times 2.11 = 65.2$	$30.93 \times 2.11 = 65.3$

However, if we had carried out the calculation as $3.66 \times 8.45 \times 2.11$ on a calculator without rounding off the intermediate answer, we would have obtained 65.3 as the answer for E . Although retaining an additional digit past the number of significant figures for intermediate steps helps to eliminate errors from rounding, this procedure is not necessary for most calculations because the difference between the answers is usually quite small. Therefore, for most examples and end-of-chapter problems where intermediate answers are reported, all answers, intermediate and final, will be rounded.

Accuracy and Precision

In discussing measurements and significant figures, it is useful to distinguish between *accuracy* and *precision*. **Accuracy** tells us *how close a measurement is to the true value of the quantity that was measured*. To a scientist there is a distinction between

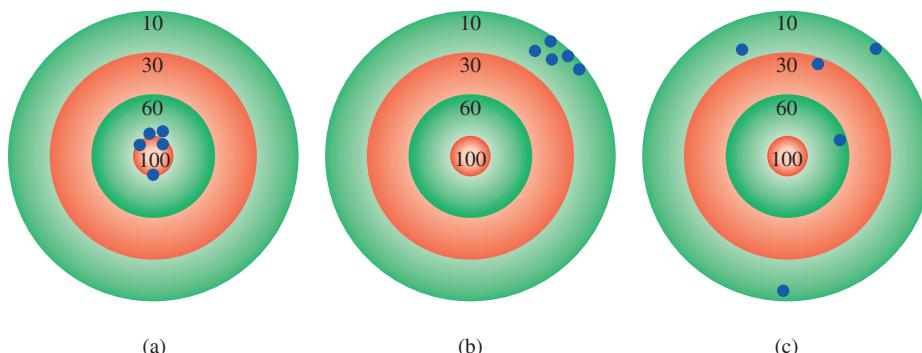


Figure 1.13 The distribution of darts on a dart board shows the difference between precise and accurate. (a) Good accuracy and good precision. (b) Poor accuracy and good precision. (c) Poor accuracy and poor precision. The black dots show the positions of the darts.

accuracy and precision. **Precision** refers to how closely two or more measurements of the same quantity agree with one another (Figure 1.13).

The difference between accuracy and precision is a subtle but important one. Suppose, for example, that three students are asked to determine the mass of a piece of copper wire. The results of two successive weighings by each student are

Student A	Student B	Student C
1.964 g	1.972 g	2.000 g
1.978 g	1.968 g	2.002 g
Average value	1.971 g	1.970 g
		2.001 g

The true mass of the wire is 2.000 g. Therefore, Student B's results are more *precise* than those of Student A (1.972 g and 1.968 g deviate less from 1.970 g than 1.964 g and 1.978 g from 1.971 g), but neither set of results is very *accurate*. Student C's results are not only the most *precise*, but also the most *accurate*, because the average value is closest to the true value. Highly accurate measurements are usually precise too. On the other hand, highly precise measurements do not necessarily guarantee accurate results. For example, an improperly calibrated meterstick or a faulty balance may give precise readings that are in error.

1.9 Dimensional Analysis in Solving Problems

Careful measurements and the proper use of significant figures, along with correct calculations, will yield accurate numerical results. But to be meaningful, the answers also must be expressed in the desired units. The procedure we use to convert between units in solving chemistry problems is called *dimensional analysis* (also called the *factor-label method*). A simple technique requiring little memorization, dimensional analysis is based on the relationship between different units that express the same physical quantity. For example, by definition 1 in = 2.54 cm (exactly). This equivalence enables us to write a conversion factor as follows:

$$\frac{1 \text{ in}}{2.54 \text{ cm}}$$

Because both the numerator and the denominator express the same length, this fraction is equal to 1. Similarly, we can write the conversion factor as

$$\frac{2.54 \text{ cm}}{1 \text{ in}}$$

Dimensional analysis might also have led Einstein to his famous mass-energy equation $E = mc^2$.

which is also equal to 1. Conversion factors are useful for changing units. Thus, if we wish to convert a length expressed in inches to centimeters, we multiply the length by the appropriate conversion factor.

$$12.00 \text{ in} \times \frac{2.54 \text{ cm}}{1 \text{ in}} = 30.48 \text{ cm}$$

We choose the conversion factor that cancels the unit inches and produces the desired unit, centimeters. Note that the result is expressed in four significant figures because 2.54 is an exact number.

Next let us consider the conversion of 57.8 meters to centimeters. This problem can be expressed as

$$? \text{ cm} = 57.8 \text{ m}$$

By definition,

$$1 \text{ cm} = 1 \times 10^{-2} \text{ m}$$

Because we are converting “m” to “cm,” we choose the conversion factor that has meters in the denominator,

$$\frac{1 \text{ cm}}{1 \times 10^{-2} \text{ m}}$$

and write the conversion as

$$\begin{aligned} ? \text{ cm} &= 57.8 \text{ m} \times \frac{1 \text{ cm}}{1 \times 10^{-2} \text{ m}} \\ &= 5780 \text{ cm} \\ &= 5.78 \times 10^3 \text{ cm} \end{aligned}$$

Note that scientific notation is used to indicate that the answer has three significant figures. Again, the conversion factor $1 \text{ cm}/1 \times 10^{-2} \text{ m}$ contains exact numbers; therefore, it does not affect the number of significant figures.

In general, to apply dimensional analysis we use the relationship

$$\text{given quantity} \times \text{conversion factor} = \text{desired quantity}$$

and the units cancel as follows:

$$\frac{\text{given unit}}{\text{given unit}} \times \frac{\text{desired unit}}{\text{given unit}} = \text{desired unit}$$

In dimensional analysis, the units are carried through the entire sequence of calculations. Therefore, if the equation is set up correctly, then all the units will cancel except the desired one. If this is not the case, then an error must have been made somewhere, and it can usually be spotted by reviewing the solution.

A Note on Problem Solving

At this point you have been introduced to scientific notation, significant figures, and dimensional analysis, which will help you in solving numerical problems. Chemistry is an experimental science and many of the problems are quantitative in nature. The key to success in problem solving is practice. Just as a marathon runner cannot prepare for a race by simply reading books on running and a pianist cannot give a successful concert by only memorizing the musical score, you cannot be sure of your understanding

Remember that the unit we want appears in the numerator and the unit we want to cancel appears in the denominator.

of chemistry without solving problems. The following steps will help to improve your skill at solving numerical problems.

1. Read the question carefully. Understand the information that is given and what you are asked to solve. Frequently it is helpful to make a sketch that will help you to visualize the situation.
2. Find the appropriate equation that relates the given information and the unknown quantity. Sometimes solving a problem will involve more than one step, and you may be expected to look up quantities in tables that are not provided in the problem. Dimensional analysis is often needed to carry out conversions.
3. Check your answer for the correct sign, units, and significant figures.
4. A very important part of problem solving is being able to judge whether the answer is reasonable. It is relatively easy to spot a wrong sign or incorrect units. But if a number (say 9) is incorrectly placed in the denominator instead of in the numerator, the answer would be too small even if the sign and units of the calculated quantity were correct.
5. One way to quickly check the answer is to make a “ball-park” estimate. The idea here is to round off the numbers in the calculation in such a way so as to simplify the arithmetic. This approach is sometimes called the “back-of-the-envelope calculation” because it can be done easily without using a calculator. The answer you get will not be exact, but it will be close to the correct one.

EXAMPLE 1.6

A person’s average daily intake of glucose (a form of sugar) is 0.0833 pound (lb). What is this mass in milligrams (mg)? (1 lb = 453.6 g.)

Strategy The problem can be stated as

$$? \text{ mg} = 0.0833 \text{ lb}$$

The relationship between pounds and grams is given in the problem. This relationship will enable conversion from pounds to grams. A metric conversion is then needed to convert grams to milligrams ($1 \text{ mg} = 1 \times 10^{-3} \text{ g}$). Arrange the appropriate conversion factors so that pounds and grams cancel and the unit milligrams is obtained in your answer.

Solution The sequence of conversions is

pounds \longrightarrow grams \longrightarrow milligrams

Using the following conversion factors

$$\frac{453.6 \text{ g}}{1 \text{ lb}} \quad \text{and} \quad \frac{1 \text{ mg}}{1 \times 10^{-3} \text{ g}}$$

we obtain the answer in one step:

$$? \text{ mg} = 0.0833 \text{ lb} \times \frac{453.6 \text{ g}}{1 \text{ lb}} \times \frac{1 \text{ mg}}{1 \times 10^{-3} \text{ g}} = 3.78 \times 10^4 \text{ mg}$$

Check As an estimate, we note that 1 lb is roughly 500 g and that 1 g = 1000 mg. Therefore, 1 lb is roughly 5×10^5 mg. Rounding off 0.0833 lb to 0.1 lb, we get 5×10^4 mg, which is close to the preceding quantity.

Conversion factors for some of the English system units commonly used in the United States for nonscientific measurements (for example, pounds and inches) are provided inside the back cover of this book.

Practice Exercise A roll of aluminum foil has a mass of 1.07 kg. What is its mass in pounds?

Similar problem: 1.45.

As Examples 1.7 and 1.8 illustrate, conversion factors can be squared or cubed in dimensional analysis.

EXAMPLE 1.7

An average adult has 5.2 L of blood. What is the volume of blood in m^3 ?

Strategy The problem can be stated as

$$? \text{ m}^3 = 5.2 \text{ L}$$

How many conversion factors are needed for this problem? Recall that $1 \text{ L} = 1000 \text{ cm}^3$ and $1 \text{ cm} = 1 \times 10^{-2} \text{ m}$.

Solution We need two conversion factors here: one to convert liters to cm^3 and one to convert centimeters to meters:

$$\frac{1000 \text{ cm}^3}{1 \text{ L}} \quad \text{and} \quad \frac{1 \times 10^{-2} \text{ m}}{1 \text{ cm}}$$

Because the second conversion factor deals with length (cm and m) and we want volume here, it must therefore be cubed to give

$$\frac{1 \times 10^{-2} \text{ m}}{1 \text{ cm}} \times \frac{1 \times 10^{-2} \text{ m}}{1 \text{ cm}} \times \frac{1 \times 10^{-2} \text{ m}}{1 \text{ cm}} = \left(\frac{1 \times 10^{-2} \text{ m}}{1 \text{ cm}} \right)^3$$

This means that $1 \text{ cm}^3 = 1 \times 10^{-6} \text{ m}^3$. Now we can write

$$? \text{ m}^3 = 5.2 \text{ L} \times \frac{1000 \text{ cm}^3}{1 \text{ L}} \times \left(\frac{1 \times 10^{-2} \text{ m}}{1 \text{ cm}} \right)^3 = 5.2 \times 10^{-3} \text{ m}^3$$

Check From the preceding conversion factors you can show that $1 \text{ L} = 1 \times 10^{-3} \text{ m}^3$. Therefore, 5 L of blood would be equal to $5 \times 10^{-3} \text{ m}^3$, which is close to the answer.

Practice Exercise The volume of a room is $1.08 \times 10^8 \text{ dm}^3$. What is the volume in m^3 ?

EXAMPLE 1.8

Liquid nitrogen is obtained from liquefied air and is used to prepare frozen goods and in low-temperature research. The density of the liquid at its boiling point (-196°C or 77 K) is 0.808 g/cm^3 . Convert the density to units of kg/m^3 .

Strategy The problem can be stated as

$$? \text{ kg/m}^3 = 0.808 \text{ g/cm}^3$$

Two separate conversions are required for this problem: $\text{g} \longrightarrow \text{kg}$ and $\text{cm}^3 \longrightarrow \text{m}^3$. Recall that $1 \text{ kg} = 1000 \text{ g}$ and $1 \text{ cm} = 1 \times 10^{-2} \text{ m}$.

Solution In Example 1.7 we saw that $1 \text{ cm}^3 = 1 \times 10^{-6} \text{ m}^3$. The conversion factors are

$$\frac{1 \text{ kg}}{1000 \text{ g}} \quad \text{and} \quad \frac{1 \text{ cm}^3}{1 \times 10^{-6} \text{ m}^3}$$

Finally,

$$? \text{ kg/m}^3 = \frac{0.808 \text{ g}}{1 \text{ cm}^3} \times \frac{1 \text{ kg}}{1000 \text{ g}} \times \frac{1 \text{ cm}^3}{1 \times 10^{-6} \text{ m}^3} = 808 \text{ kg/m}^3$$

(Continued)

Liquid nitrogen.

Check Because $1 \text{ m}^3 = 1 \times 10^6 \text{ cm}^3$, we would expect much more mass in 1 m^3 than in 1 cm^3 . Therefore, the answer is reasonable.

Practice Exercise The density of the lightest metal, lithium (Li), is $5.34 \times 10^2 \text{ kg/m}^3$. Convert the density to g/cm^3 .

Key Equations

$$d = \frac{m}{V} \quad (1.1)$$

Equation for density

Summary of Facts and Concepts

1. The study of chemistry involves three basic steps: observation, representation, and interpretation. Observation refers to measurements in the macroscopic world; representation involves the use of shorthand notation symbols and equations for communication; interpretations are based on atoms and molecules, which belong to the microscopic world.
2. Chemists study matter and the changes it undergoes. The substances that make up matter have unique physical properties that can be observed without changing their identity and unique chemical properties that, when they are demonstrated, do change the identity of the substances. Mixtures, whether homogeneous or heterogeneous, can be separated into pure components by physical means.
4. The simplest substances in chemistry are elements. Compounds are formed by the chemical combination of atoms of different elements in fixed proportions.
5. All substances, in principle, can exist in three states: solid, liquid, and gas. The interconversion between these states can be effected by changing the temperature.
6. SI units are used to express physical quantities in all sciences, including chemistry.
7. Numbers expressed in scientific notation have the form $N \times 10^n$, where N is between 1 and 10, and n is a positive or negative integer. Scientific notation helps us handle very large and very small quantities.

Answers to Practice Exercises

1.1 96.5 g. **1.2** 341 g. **1.3** (a) 621.5°F, (b) 78.3°C, (c) -196°C . **1.4** (a) Two, (b) four, (c) three, (d) two, (e) three or two. **1.5** (a) 26.76 L, (b) 4.4 g,

(c) $\times 10^7 \text{ dm}^2$, (d) 0.0756 g/mL, (e) $6.69 \times 10^4 \text{ m}$.
1.6 2.36 lb. **1.7** $1.08 \times 10^5 \text{ m}^3$. **1.8** 0.534 g/cm³.