Chapter Outline ‘? ) | A Look Ahead

e We begin with a brief introduction to the study of chemistry and describe
its role in our modern society. (1.1 and 1.2)

1.1 Chemistry: A Science for
the Twenty-First Century e Next, we become familiar with the scientific method, which is a systematic

approach to research in all scientific disciplines. (1.3)

1.2 The Study of Chemistry

o e We define matter and note that a pure substance can either be an element
1.3 The Scientific Method or a compound. We distinguish between a homogeneous mixture and a het-
14 Classifications of Matter erogeneous mixture. We also learn that, in principle, all matter can exist in

one of three states: solid, liquid, and gas. (1.4 and 1.5)
1.5 The Three States of Matter ) ) ; ) )
e To characterize a substance, we need to know its physical properties, which

1.6 Physica.l and Chemical can be observed without changing its identity and chemical properties, which
Properties of Matter can be demonstrated only by chemical changes. (1.6)
1.7 Measurement e Being an experimental science, chemistry involves measurements. We learn

the basic SI units and use the SI-derived units for quantities like volume and
density. We also become familiar with the three temperature scales: Celsius,
1.9 Dimensional Analysis in Fahrenheit, and Kelvin. (1.7)

Solving Problems °

1.8 Handling Numbers

Chemical calculations often involve very large or very small numbers and a
convenient way to deal with these numbers is the scientific notation. In
calculations or measurements, every quantity must show the proper number
of significant figures, which are the meaningful digits. (1.8)

e Finally, we learn that dimensional analysis is useful in chemical calculations.
By carrying the units through the entire sequence of calculations, all the
units will cancel except the desired one. (1.9)

hemistry is an active, evolving science that has vital importance to our

world, in both the realm of nature and the realm of society. Its roots are
ancient, but as we will see, chemistry is every bit a modern science.

We will begin our study of chemistry at the macroscopic level, where we
can see and measure the materials of which our world is made. In this chapter,
we will discuss the scientifi ¢ method, which provides the framework for research
not only in chemistry but in all other sciences as well. Next we will discover
how scientists defi ne and characterize matter. Then we will spend some time
learning how to handle numerical results of chemical measurements and solve
numerical problems. In Chapter 2, we will begin to explore the microscopic world
of atoms and molecules.
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L,

The Chinese characters for chemistry
mean “The study of change.”

Chemistry: A Science for the Twenty-First Century

Chemistry is the study of matter and the changes it undergoes. Chemistry is
often called the central science, because a basic knowledge of chemistry is
essential for students of biology, physics, geology, ecology, and many other
subjects. Indeed, it is central to our way of life; without it, we would be living
shorter lives in what we would consider primitive conditions, without automobiles,
electricity, computers, CDs, and many other everyday conveniences.

Although chemistry is an ancient science, its modern foundation was laid in
the nineteenth century, when intellectual and technological advances enabled
scientists to break down substances into ever smaller components and
consequently to explain many of their physical and chemical characteristics. The
rapid development of increas-ingly sophisticated technology throughout the
twentieth century has given us even greater means to study things that cannot be
seen with the naked eye. Using comput-ers and special microscopes, for example,
chemists can analyze the structure of atoms and molecules—the fundamental units on
which the study of chemistry is based—and design new substances with specifi ¢
properties, such as drugs and environmentally friendly consumer products.

As we enter the twenty-first century, it is fi tting to ask what part the central sci-
ence will have in this century. Almost certainly, chemistry will continue to play
a pivotal role in all areas of science and technology. Before plunging into the study
of matter and its transformation, let us consider some of the frontiers that chemists
are currently exploring (Figure 1.1). Whatever your reasons for taking general
chemistry, a good knowledge of the subject will better enable you to appreciate
its impact on society and on you as an individual.



1.2 The Study of Chemistry

Figure 1.2 A simplified molecular view of rust (Fe,Os) formation from iron (Fe) atoms and oxygen molecules (O,). In reality the
process requires water, and rust also contains water molecules.

1.2 The Study of Chemistry

Compared with other subjects, chemistry is commonly believed to be more difficult, at least at the
introductory level. There is some justification for this perception; for one thing, chemistry has a very
specialized vocabulary. However, even if this is your fi rst course in chemistry, you already have more
familiarity with the subject than you may realize. In everyday conversations we hear words that
have a chemical connection, although they may not be used in the scientifically correct sense.
Examples are ‘“‘elec-tronic,” “quantum leap,” “equilibrium,” “catalyst,” ‘“‘chain reaction,” and “critical
mass.” Moreover, if you cook, then you are a practicing chemist! From experience gained in the
kitchen, you know that oil and water do not mix and that boiling water left on the stove will
evaporate. You apply chemical and physical principles when you use baking soda to leaven bread,
choose a pressure cooker to shorten the time it takes to prepare soup, add meat tenderizer to a pot
roast, squeeze lemon juice over sliced pears to prevent them from turning brown or over fish to minimize its
odor, and add vinegar to the water in which you are going to poach eggs. Every day we observe such
changes without thinking about their chemical nature. The purpose of this course is to make you think
like a chemist, to look at the macroscopic world—the things we can see, touch, and measure directly—
and visualize the particles and events of the microscopic world thatwe cannot experience without
modern technology and our imaginations.

At first some students find it confusing that their chemistry instructor and textbook seem to be
continually shifting back and forth between the macroscopic and microscopic worlds. Just keep in mind
that the data for chemical investigations most often come from observations of large-scale
phenomena, but the explanations frequently lie in the unseen and partially imagined microscopic world of
atoms and molecules. In other words, chemists often see one thing (in the macroscopic world) and
think another (in the microscopic world). Looking at the rusted nailsin Figure 1.2, for example, a
chemist might think about the basic properties of individual atoms of iron and how these units interact
with other atoms and molecules to produce the observed change.

9
il

1.4 Classifications of Matter

We defined chemistry at the beginning of the chapter as the study of matter and the changes
it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can
see and touch (such as water, earth, and trees), as well as things we cannot (such as air). Thus,
everything in the universe has a “chemical” connection.
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Chemists distinguish among several subcategories of matter based on composition and properties.
The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms
and molecules, which we will consider in Chapter 2.

Substances and Mixtures

A substance is a form of matter that has a definite (constant) composition and distinct properties. Examples
are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in
composition and can be identified by their appearance, smell, taste, and other properties. A

mixture is a combination of two or more substances in which the substances retain their distinct
identities. Some familiar examples are air, soft drinks, milk, and cement. Mixtures do not have constant
composition. Therefore, samples of air col-lected in different cities would probably differ in composition
because of differences in altitude, pollution, and so on.

Mixtures are either homogeneous or heterogeneous. When a spoonful of sugar dissolves in water we
obtain a homogeneous mixture in which the composition of the mixture is the same throughout. If sand is
mixed with iron filings, however, the sand grains and the iron filings remain separate (Figure 1.4). This type
of mixture is called a heferogeneous mixture because the composition is not uniform.

Any mixture, whether homogeneous or heterogeneous, can be created and then separated by physical
means into pure components without changing the identities of the components. Thus, sugar can be
recovered from a water solution by heating the solution and evaporating it to dryness. Condensing the
vapor will give us back the water component. To separate the iron-sand mixture, we can use a magnet to
remove the iron fi lings from the sand, because sand is not attracted to the magnet [see Fig-ure 1.4(b)].
After separation, the components of the mixture will have the same com-position and properties as they
did to start with.

Elements and Compounds

Substances can be either elements or compounds. An element is a substance that cannot be separated
into simpler substances by chemical means. 94 elements can be found as naturally occurring on Earth.

Figure 1.4 (a) The mixture
contains iron filings and sand.
(b) A magnet separates the iron
filings from the mixture. The
same technique is used on a
larger scale to separate iron and
steel from nonmagnetic objects
such as aluminum, glass, and
plastics.

(@) (b)
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TABLE 1.1 Some Common Elements and Their Symbols

Name Symbol Name Symbol Name Symbol
Aluminum Al Fluorine 1% Oxygen (6]
Arsenic As Gold Au Phosphorus P
Barium Ba Hydrogen H Platinum Pt
Bismuth Bi Iodine I Potassium K
Bromine Br Iron Fe Silicon Si
Calcium Ca Lead Pb Silver Ag
Carbon C Magnesium Mg Sodium Na
Chlorine Cl Manganese Mn Sulfur S
Chromium Cr Mercury Hg Tin Sn
Cobalt Co Nickel Ni Tungsten W
Copper Cu Nitrogen N Zinc Zn

Others have been created by scientists via nuclear processes, which are the subject of Chapter 23 of
this text.

For convenience, chemists use symbols of one or two letters to represent the elements. The first
letter of a symbol is always capitalized, but any following letters are not. For example, Co is the
symbol for the element cobalt, whereas CO is the formula for the carbon monoxide molecule. Table 1.1
shows the names and symbols of some of the more common elements; a complete list of the
elements and their symbols appears inside the front cover of this book. The symbols of some elements
are derived from their Latin names—for example, Au from aurum (gold), Fe from ferrum (iron), and
Na from natrium (sodium)—whereas most of them come from their English names. Appendix 1 gives the
origin of the names and lists the discoverers of most of the elements.

Atoms of most elements can interact with one another to form compounds. Hydrogen gas, for example,
burns in oxygen gas to form water, which has properties that are distinctly different from those of the
starting materials. Water is made up of two parts hydrogen and one part oxygen. This composition does
not change, regardless of whether the water comes from a faucet in the United States, a lake in
Outer Mongolia, or the ice caps on Mars. Thus, water is a compound, a substance composed of
atoms of two or more elements chemically united in fixed proportions.Unlike mixtures, compounds can
be separated only by chemical means into their pure components.

The relationships among elements, compounds, and other categories of matter are summarized in
Figure 1.5.
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Figurel.5 Classifi cation of matter.

1.5 The Three States of Matter

All substances, at least in principle, can exist in three states: solid, liquid, and gas. As Figure 1.6 shows,
gases differ from liquids and solids in the distances between the molecules. In a solid, molecules are held
close together in an orderly fashion with little freedom of motion. Molecules in a liquid are close together
but are not held so rigidly in position and can move past one another. In a gas, the molecules are sepa-
rated by distances that are large compared with the size of the molecules.

The three states of matter can be interconverted without changing the composition of the substance.
Upon heating, a solid (for example, ice) will melt to form a liquid (water). (The temperature at which this
transition occurs is called the melting point.)Further heating will convert the liquid into a gas. (This
conversion takes place at the boiling point of the liquid.) On the other hand, cooling a gas will cause it to
condense into a liquid. When the liquid is cooled further, it will freeze into the solid form.

- Figure 1.6 Microscopic views
’ of a solid, a liquid, and a gas.
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Figure 1.7 The three states of
matter. A hot poker changes ice
into water and steam.

Figure 1.7 shows the three states of water. Note that the properties of water are unique
among common substances in that the molecules in the liquid state are more closely
packed than those in the solid state.

1.6 Physical and Chemical Properties of Matter

Substances are identified by their properties as well as by their composition. Color, melting point, and boiling
point are physical properties. A physical propertycan be measured and observed without changing the
composition or identity of a substance.



1.6 Physical and Chemical Properties of Matter

For example, we can measure the melting point of ice by heating a block of ice and

recording the temperature at which the ice is converted to water. Water differs from
ice only in appearance, not in composition, so this is a physical change; we can freeze

the water to recover the original ice. Therefore, the melting point of a substance is a

physical property. Similarly, when we say that helium gas is lighter than air, we are
referring to a physical property.

On the other hand, the statement “Hydrogen gas burns in oxygen gas to form
water” describes a chemical property of hydrogen, because fo observe this property
we must carry out a chemical change, in this case burning. After the change, the
original chemical substance, the hydrogen gas, will have vanished, and all that will
be left is a different chemical substance—water. We cannot recover the hydrogen from
the water by means of a physical change, such as boiling or freezing.

Every time we hard-boil an egg, we bring about a chemical change. When
subjected to a temperature of about 100°C, the yolk and the egg white undergo
changes that alter not only their physical appearance but their chemical makeup as
well. When eaten, the egg is changed again, by substances in our bodies called
enzymes. This digestive action is another example of a chemical change. What
happens during digestion depends on the chemical properties of both the enzymes
and the food.

All measurable properties of matter fall into one of two additional categories:
extensive properties and intensive properties. The measured value of an extensive
property depends on how much matter is being considered. Mass, which is the
quantity of matter in a given sample of a substance, is an extensive property. More
matter means more mass. Values of the same extensive property can be added
together. For example, two copper pennies will have a combined mass that is the
sum of the masses of each penny, and the length of two tennis courts is the sum
of the lengths of each tennis court. Volume, defined as length cubed, is another
extensive property. The value of an extensive quantity depends on the amount of
matter.

The measured value of an intensive property does not depend on how much mat-
ter is being considered. Density, defined as the mass of an object divided by its volume,
is an intensive property. So is temperature. Suppose that we have two beakers of water
at the same temperature. If we combine them to make a single quantity of water in
a larger beaker, the temperature of the larger quantity of water will be the same as it
was in two separate beakers. Unlike mass, length, and volume, temperature and other
intensive properties are not additive.

15

Hydrogen burning in air to form water.
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1.7 Measurement [

The measurements chemists make are often used in calculations to obtain other related quantities. Different
instruments enable us to measure a substance’s properties: The meterstick measures length or scale; the buret, the
pipet, the graduated cylinder, and the volumetric fl ask measure volume (Figure 1.8); the balance measures mass;
the thermometer measures temperature. These instruments provide measurements of mac-roscopic properties, which
can be determined directly. Microscopic properties, on the atomic or molecular scale, must be determined by an
indirect method, as we will see in Chapter 2.

A measured quantity is usually written as a number with an appropriate unit. To say that the distance
between New York and San Francisco by car along a cer-tain route is 5166 is meaningless. We must specify
that the distance is 5166 kilometers. The same is true in chemistry; units are essential to stating measurements
correctly.

SI Units

For many years, scientists recorded measurements in metric units, which are related decimally, that is, by powers
of 10. In 1960, however, the General Conference of Weights and Measures, the international authority on units,
proposed a revised metric system called the International System of Units (abbreviated SI, from the French S
ysteme Internationale d’Unites). Table 1.2 shows the seven SI base units. All other units of measurement can be
derived from these base units. Like metric units, SI units are modifi ed in decimal fashion by a series of prefi xes, as
shown in Table 1.3. We will use both metric and SI units in this book.

Measurements that we will utilize frequently in our study of chemistry include time, mass, volume, density,
and temperature.

Figure 1.8 Some common mL
measuring devices found in a =
chemistry laboratory. These £ mL
devices are not drawn to scale 1= 100 —— —
relative to one another. We will 3 —
discuss the uses of these 2 = i =
measuring devices in Chapter 4. = " =
35— —
£ 80 h —a
4153 } —=
- 70 \%/ - —
155 =
= 60 — =
= - =
16 § E =
E %% S0 =
17 &— B =
18 ; 40 \g/
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205~ We =
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I =1 1 liter
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Buret Pipet Graduated cylinder Volumetric flask
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TABLE 1.2 | S| Base Units

Base Quantity Name of Unit Symbol
Length meter m
Mass kilogram kg
Time second S
Electrical current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

TABLE 1.3 Prefixes Used with Sl Units

Prefix Symbol Meaning Example

tera- T 1,000,000,000,000, or 10* 1 terameter (Tm) = 1 X 10 m
giga- G 1,000,000,000, or 10° 1 gigameter (Gm) = 1 X 10° m
mega- M 1,000,000, or 10° 1 megameter (Mm) = 1 X 10° m
kilo- k 1,000, or 10° 1 kilometer (km) = 1 X 10° m
deci- d 1/10, or 107" 1 decimeter (dm) = 0.1 m

centi- G 1/100, or 1072 1 centimeter (cm) = 0.01 m
milli- m 1/1,000, or 107° 1 millimeter (mm) = 0.001 m
micro- w 1/1,000,000, or 107 1 micrometer (um) =1 X 10 m
nano- n 1/1,000,000,000, or 107° 1 nanometer (nm) = 1 X 10™° m
pico- P 1/1,000,000,000,000, or 10" 1 picometer (pm) = 1 X 10~"* m

Mass and Weight

The terms “mass” and “weight” are often used interchangeably, although,
strictly speaking, they are different quantities. Whereas mass is a measure of the
amount of matter in an object, weight, technically speaking, is the force that
gravity exerts on an object. An apple that falls from a tree is pulled downward by
Earth’s gravity. The mass of the apple is constant and does not depend on its
location, but its weight does. For example, on the surface of the moon the apple
would weigh only one-sixth what it does on Earth, because the moon’s gravity is
only one-sixth that of Earth. The moon’s smaller gravity enabled astronauts to
jump about rather freely on its surface despite their bulky suits and equipment.
Chemists are interested primarily in mass, which can be determined readily with a
balance; the process of measuring mass, oddly, is called weighing.

The SI unit of mass is the kilogram (kg). Unlike the units of length and
time, which are based on natural processes that can be repeated by scientists
anywhere, the kilogram is defi ned in terms of a particular object (Figure 1.9). In
chemistry, however, the smaller gram (g) is more convenient:

1kg=1000g=1X10"g

Note that a metric prefix simply represents
a number:
1mm=1x10°m

An astronaut jumping on the surface of
the moon.
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Volume: 1000 cm3;

1000 mL;
1dm3;
1L
—> l—1lcm
[ ——10cm=1dm

Volume: 1 cm?;
1 mL

—> l—1cm

Figure 1.10 Comparison of two
volumes, 1 mL and 7000 mL.

TABLE 1.4
Densities of Some
Substances at 25°C
Density
Substance (g/cm?)
Air* 0.001
Ethanol 0.79
Water 1.00
Mercury 13.6
Table salt 2.2
Iron 7.9
Gold 19.3
Osmium" 22.6

*Measured at 1 atmosphere.
fOsmium (Os) is the densest element
known.

Volume

The ST unit of length is the meter (m), and the SI-derived unit for volume is the cubic
meter (m3). Generally, however, chemists work with much smaller volumes, such as
the cubic centimeter (cm®) and the cubic decimeter (dm?):

lem® = (1 xX10%m’=1x10°m’
ldm®=(1x10"'"m)}’=1x10"m’

[
8

Another common unit of volume is the liter (L). A liter is the volume occupied by
one cubic decimeter. One liter of volume is equal to 1000 milliliters (mL) or
1000 cm’™:

1L = 1000 mL
1000 cm®
=1dm’

and one milliliter is equal to one cubic centimeter:
ImL =1 cm’

Figure 1.10 compares the relative sizes of two volumes. Even though the liter is not
an SI unit, volumes are usually expressed in liters and milliliters.

Density

The equation for density is

. mass
density =
volume
or
a==2 (1.1)
v .

where d, m, and V denote density, mass, and volume, respectively. Because density is
an intensive property and does not depend on the quantity of mass present, for a given
substance the ratio of mass to volume always remains the same; in other words, V
increases as m does. Density usually decreases with temperature.

The SI-derived unit for density is the kilogram per cubic meter (kg/m?). This unit
is awkwardly large for most chemical applications. Therefore, grams per cubic centi-
meter (g/cm’) and its equivalent, grams per milliliter (g/mL), are more commonly
used for solid and liquid densities. Because gas densities are often very low, we
express them in units of grams per liter (g/L):

1 g/em® = 1 g/mL = 1000 kg/m’
1 ¢g/L = 0.001 g/mL

Table 1.4 lists the densities of several substances.
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Examples 1.1 and 1.2 show density calculations.

EXAMPLE 1.1

Gold is a precious metal that is chemically unreactive. It is used mainly in jewelry,
dentistry, and electronic devices. A piece of gold ingot with a mass of 301 g has a
volume of 15.6 cm®. Calculate the density of gold.

Solution We are given the mass and volume and asked to calculate the density.
Therefore, from Equation (1.1), we write

="
\%

301 g
15.6 cm®

=19.3 g/em®

Practice Exercise A piece of platinum metal with a density of 21.5 g/cm’® has a
volume of 4.49 cm’. What is its mass?

EXAMPLE 1.2

The density of mercury, the only metal that is a liquid at room temperature, is 13.6 g/mL.
Calculate the mass of 5.50 mL of the liquid.

Solution We are given the density and volume of a liquid and asked to calculate the
mass of the liquid. We rearrange Equation (1.1) to give

m=dXV

g
13.6—— X 5.50 mE
3.6 5.50

748 ¢

Practice Exercise The density of sulfuric acid in a certain car battery is 1.41 g/mL.
Calculate the mass of 242 mL of the liquid.

Temperature Scales

Three temperature scales are currently in use. Their units are °F (degrees
Fahren-heit), °C (degrees Celsius), and K (kelvin). The Fahrenheit scale, which is
the most commonly used scale in the United States outside the laboratory, defi nes
the normal freezing and boiling points of water to be exactly 32°F and 212°F,
respectively. The Celsius scale divides the range between the freezing point (0°
C) and boiling point (100°C) of water into 100 degrees. As Table 1.2 shows, the
kelvin is the SI base unit of temperature: it is the absolute temperature scale. By
absolute we mean that the zero on the Kelvin scale, denoted by 0 K, is the
lowest temperature that can be attained theoretically. On the other hand, 0°F
and 0°C are based on the behavior of an arbitrarily chosen substance, water.
Figure 1.11 compares the three temperature scales.

Gold bars.

Similar problems: 1.21, 1.22.

Mercury.

Note that the Kelvin scale does not have
the degree sign. Also, temperatures
expressed in kelvins can never be
negative.
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Figure 1.11 Comparison of the
three temperature scales: Celsius,
and Fahrenheit, and the absolute
(Kelvin) scales. Note that there
are 100 divisions, or 100 degrees,
between the freezing point and
the boiling point of water on

the Celsius scale, and there

are 180 divisions, or 180
degrees, between the same two
temperature limits on the
Fahrenheit scale. The Celsius
scale was formerly called the
centigrade scale.

373K — 100°C —=— Boiling point —— 212°F
of water
Body
310K — 37°C — <— temperature —> — 98.6°F
298 K 25°C § <=— Room —>
temperature
273 K 0°C § <Freezing point—
of water
Kelvin Celsius Fahrenheit

Both the Celsius and the Kelvin scales have units of equal magnitude; that
is, one degree Celsius is equivalent to one kelvin. Experimental studies have shown
that absolute zero on the Kelvin scale is equivalent to —273.15°C on the Celsius

scale. Thus, we can use the following equation to convert degrees Celsius to

kelvin:

1K
7K = (°C + 273.15°C) 7o

(1.4)

We will frequently find it necessary to convert between degrees Celsius and

kelvin.
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Handling Numbers

Having surveyed some of the units used in chemistry, we now turn to techniques for han-
dling numbers associated with measurements: scientific notation and significant figures.

Scientific Notation

Chemists often deal with numbers that are either extremely large or extremely small.
For example, in 1 g of the element hydrogen there are roughly

602,200,000,000,000,000,000,000
hydrogen atoms. Each hydrogen atom has a mass of only
0.00000000000000000000000166 g

These numbers are cumbersome to handle, and it is easy to make mistakes when using
them in arithmetic computations. Consider the following multiplication:

0.0000000056 X< 0.00000000048 = 0.000000000000000002688

It would be easy for us to miss one zero or add one more zero after the decimal point.
Consequently, when working with very large and very small numbers, we use a sys-
tem called scientific notation. Regardless of their magnitude, all numbers can be
expressed in the form

N X 10"

where N is a number between 1 and 10 and n, the exponent, is a positive or negative
integer (whole number). Any number expressed in this way is said to be written in
scientific notation.

Suppose that we are given a certain number and asked to express it in scientific
notation. Basically, this assignment calls for us to find n. We count the number of
places that the decimal point must be moved to give the number N (which is between
1 and 10). If the decimal point has to be moved to the left, then n is a positive inte-
ger; if it has to be moved to the right, n is a negative integer. The following examples
illustrate the use of scientific notation:

(1) Express 568.762 in scientific notation:
568.762 = 5.68762 X 107

Note that the decimal point is moved to the left by two places and n = 2.
(2) Express 0.00000772 in scientific notation:

0.00000772 = 7.72 X 10°°

Here the decimal point is moved to the right by six places and n = —6.
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Keep in mind the following two points. First, n = 0 is used for numbers that are  Any number raised to the power zero is
not expressed in scientific notation. For example, 74.6 X 10° (n = 0) is equivalent to ~ °altoone.
74.6. Second, the usual practice is to omit the superscript when n = 1. Thus, the
scientific notation for 74.6 is 7.46 X 10 and not 7.46 X 10",

Next, we consider how scientific notation is handled in arithmetic operations.

Addition and Subtraction

To add or subtract using scientific notation, we first write each quantity—say N, and
N,—with the same exponent n. Then we combine N; and N,; the exponents remain
the same. Consider the following examples:

(74 X 10°) + (2.1 X 10*) = 9.5 X 10°

(431 X 10" + (3.9 X 10*) = (4.31 X 10%) + (0.39 X 10%
=470 x 10*

(222 X 107%) — (0.41 X 107?)

=181 X102

(222 X 107%) — (4.10 X 107%)

Multiplication and Division

To multiply numbers expressed in scientific notation, we multiply N, and N, in the
usual way, but add the exponents together. To divide using scientific notation, we
divide N, and N, as usual and subtract the exponents. The following examples show
how these operations are performed:

(8.0 X 10" X (5.0 X 10*) = (8.0 X 5.0)(10**%)

=40 % 10°
=4.0 % 10’
(4.0 X 107%) X (7.0 X 10*) = (4.0 X 7.0)(107°"%)
=28 X 1072
=28x 10"
,
30X 1077 3.0
=23 x 10"
8.5 % 100 85
=X 10"
50 % 10° 5.0

=17%x107

Significant Figures

Except when all the numbers involved are integers (for example, in counting the number
of students in a class), it is often impossible to obtain the exact value of the quantity under
investigation. For this reason, it is important to indicate the margin of error in a measurement
by clearly indicating the number of significant figures, which are the meaningful digits in a
measured or calculated quantity. When significant figures are used, the last digit is
understood to be uncertain. For example, we might measure the volume of a given amount
of liquid using a graduated cylinder with a scale that gives an uncertainty of 1 mL in the
measurement. If the volume is found to be 6 mL, then the actual volume is in the range of
5 mL to 7 mL. We represent

the volume of the liquid as (6 & 1) mL. In this case, there is only one significant figure (the
digit 6) that is uncertain by either plus or minus 1 mL. For greater accuracy, we might use a
graduated cylinder that has finer divisions, so that the volume we measure is now uncertain
by only 0.1 mL. If the volume of the liquid is now found to be 6.0 mL, we may express the
quantity as (6.0 £ 0.1) mL, and the actual value
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Figure 1.12 A single-pan
balance.

is somewhere between 5.9 mL and 6.1 mL. We can further improve the measuring
device and obtain more significant figures, but in every case, the last digit is always
uncertain; the amount of this uncertainty depends on the particular measuring device
we use.

Figure 1.12 shows a modern balance. Balances such as this one are available in
many general chemistry laboratories; they readily measure the mass of objects to four
decimal places. Therefore, the measured mass typically will have four significant
figures (for example, 0.8642 g) or more (for example, 3.9745 g). Keeping track of
the number of significant figures in a measurement such as mass ensures that calcula-
tions involving the data will reflect the precision of the measurement.

Guidelines for Using Significant Figures

We must always be careful in scientific work to write the proper number of significant
figures. In general, it is fairly easy to determine how many significant figures a num-
ber has by following these rules:

1. Any digit that is not zero is significant. Thus, 845 cm has three significant figures,
1.234 kg has four significant figures, and so on.

2. Zeros between nonzero digits are significant. Thus, 606 m contains three signifi-
cant figures, 40,501 kg contains five significant figures, and so on.

3. Zeros to the left of the first nonzero digit are not significant. Their purpose is to
indicate the placement of the decimal point. For example, 0.08 L contains one
significant figure, 0.0000349 g contains three significant figures, and so on.

4. If a number is greater than 1, then all the zeros written to the right of the decimal
point count as significant figures. Thus, 2.0 mg has two significant figures,
40.062 mL has five significant figures, and 3.040 dm has four significant figures.
If a number is less than 1, then only the zeros that are at the end of the number
and the zeros that are between nonzero digits are significant. This means that
0.090 kg has two significant figures, 0.3005 L has four significant figures, 0.00420
min has three significant figures, and so on.

5. For numbers that do not contain decimal points, the trailing zeros (that is, zeros
after the last nonzero digit) may or may not be significant. Thus, 400 cm may have
one significant figure (the digit 4), two significant figures (40), or three significant
figures (400). We cannot know which is correct without more information. By using
scientific notation, however, we avoid this ambiguity. In this particular case, we can
express the number 400 as 4 X 10 for one significant figure, 4.0 X 10? for two
significant figures, or 4.00 X 107 for three significant figures.

Example 1.4 shows the determination of significant figures.

EXAMPLE 1.4

Determine the number of significant figures in the following measurements: (a) 478 cm,
(b) 6.01 g, (c) 0.825 m, (d) 0.043 kg, (e) 1.310 X 10** atoms, (f) 7000 mL.

Solution (a) Three, because each digit is a nonzero digit. (b) Three, because zeros
between nonzero digits are significant. (c) Three, because zeros to the left of the first
nonzero digit do not count as significant figures. (d) Two. Same reason as in (c).

(e) Four, because the number is greater than one so all the zeros written to the right of
the decimal point count as significant figures. (f) This is an ambiguous case. The number
of significant figures may be four (7.000 X 10°), three (7.00 X 10%), two (7.0 X 10°),

(Continued)
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or one (7 X 10%). This example illustrates why scientific notation must be used to show
the proper number of significant figures.

Practice Exercise Determine the number of significant figures in each of the following
measurements: (a) 24 mL, (b) 3001 g, (c) 0.0320 m’, (d) 6.4 X 10* molecules, (¢) 560 kg.

A second set of rules specifies how to handle significant figures in calculations.

1. In addition and subtraction, the answer cannot have more digits to the right of
the decimal point than either of the original numbers. Consider these examples:

89.332
+ 1.1 «——one digit after the decimal point

90.432 «—round off to 90.4

2.097
— 0.12 «—two digits after the decimal point

1.977 «—round off to 1.98

The rounding-off procedure is as follows. To round off a number at a certain point
we simply drop the digits that follow if the first of them is less than 5. Thus, 8.724
rounds off to 8.72 if we want only two digits after the decimal point. If the first
digit following the point of rounding off is equal to or greater than 5, we add 1 to
the preceding digit. Thus, 8.727 rounds off to 8.73, and 0.425 rounds off to 0.43.

2. In multiplication and division, the number of significant figures in the final prod-
uct or quotient is determined by the original number that has the smallest number
of significant figures. The following examples illustrate this rule:

2.8 X 4.5039 = 12.61092 <— round off to 13
6.85
112.04

= 0.0611388789 «<— round off to 0.0611

3. Keep in mind that exact numbers obtained from definitions or by counting num-
bers of objects can be considered to have an infinite number of significant figures.
For example, the inch is defined to be exactly 2.54 centimeters; that is,

1in = 2.54 cm

Thus, the “2.54” in the equation should not be interpreted as a measured number with
three significant figures. In calculations involving conversion between “in” and “cm,”
we treat both “1”” and “2.54” as having an infinite number of significant figures. Sim-
ilarly, if an object has a mass of 5.0 g, then the mass of nine such objects is

50eX9=45¢

The answer has two significant figures because 5.0 g has two significant figures.
The number 9 is exact and does not determine the number of significant figures.
Example 1.5 shows how significant figures are handled in arithmetic operations.

EXAMPLE 1.5

Carry out the following arithmetic operations to the correct number of significant
figures: (a) 11,254.1 g + 0.1983 g, (b) 66.59 L — 3.113 L, (c) 8.16 m X 5.1355,
(d) 0.0154 kg + 88.3 mL, () 2.64 X 10’ cm + 3.27 X 10*> cm.

(Continued)

Similar problems: 1.33, 1.34.
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Solution In addition and subtraction, the number of decimal places in the answer is
determined by the number having the lowest number of decimal places. In multiplication
and division, the significant number of the answer is determined by the number having
the smallest number of significant figures.

(a) 11,2541 g
4F 0.1983 g
11,254.2983 g «—— round off to 11,254.3 g
(b) 6659 L
— 3.113 L
63.477 L «— round off to 63.48 L
(¢) 8.16 m X 5.1355 = 41.90568 m «—— round off to 41.9 m

0.0154 kg
d) —————2 = 0.000174405436 kg/mL <— round off to 0.000174 kg/mL

e or 1.74 X 10~* kg/mL
(e) First we change 3.27 X 10 cm to 0.327 X 10° cm and then carry out the addition

(2.64 cm + 0.327 cm) X 10°. Following the procedure in (a), we find the answer is
2.97 X 10° cm.

Practice Exercise Carry out the following arithmetic operations and round off the
answers to the appropriate number of significant figures: (a) 26.5862 L + 0.17 L,

(b) 9.1 g — 4.682 g, (c) 7.1 X 10* dm X 2.2654 X 10 dm, (d) 6.54 g + 86.5542 mL,
(e) (7.55 x 10* m) — (8.62 X 10’ m).

The preceding rounding-off procedure applies to one-step calculations. In
chain calculations, that is, calculations involving more than one step, we can get
a different answer depending on how we round off. Consider the following two-step
calculations:

First step: AXB=C
Second step: CXD=E

Let’s suppose that A = 3.66, B = 8.45, and D = 2.11. Depending on whether we round
off C to three or four significant figures, we obtain a different number for E:

Method 1 Method 2
3.66 X 8.45 = 30.9 3.66 X 8.45 = 30.93
30.9 X 2.11 = 65.2 3093 X 2.11 = 653

However, if we had carried out the calculation as 3.66 X 8.45 X 2.11 on a calculator
without rounding off the intermediate answer, we would have obtained 65.3 as the answer
for E. Although retaining an additional digit past the number of significant figures for
intermediate steps helps to eliminate errors from rounding, this procedure is not necessary
for most calculations because the difference between the answers is usually quite small.
Therefore, for most examples and end-of-chapter problems where intermediate answers
are reported, all answers, intermediate and final, will be rounded.

Accuracy and Precision

In discussing measurements and significant figures, it is useful to distinguish between
accuracy and precision. Accuracy tells us how close a measurement is to the true
value of the quantity that was measured. To a scientist there is a distinction between
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(a) (b) (©)

accuracy and precision. Precision refers to how closely two or more measurements of
the same quantity agree with one another (Figure 1.13).

The difference between accuracy and precision is a subtle but important one.
Suppose, for example, that three students are asked to determine the mass of a piece
of copper wire. The results of two successive weighings by each student are

Student A Student B Student C

1.964 ¢ 1972 ¢ 2.000 g
1978 ¢ 1.968 g 2.002 g
Average value 1971 g 1.970 g 2.001 g

The true mass of the wire is 2.000 g. Therefore, Student B’s results are more precise
than those of Student A (1.972 g and 1.968 g deviate less from 1.970 g than 1.964 g
and 1.978 g from 1.971 g), but neither set of results is very accurate. Student C’s
results are not only the most precise, but also the most accurate, because the average
value is closest to the true value. Highly accurate measurements are usually precise too.
On the other hand, highly precise measurements do not necessarily guarantee accurate
results. For example, an improperly calibrated meterstick or a faulty balance may give
precise readings that are in error.

Dimensional Analysis in Solving Problems

Careful measurements and the proper use of significant figures, along with correct
calculations, will yield accurate numerical results. But to be meaningful, the answers
also must be expressed in the desired units. The procedure we use to convert between
units in solving chemistry problems is called dimensional analysis (also called the
factor-label method). A simple technique requiring little memorization, dimensional
analysis is based on the relationship between different units that express the same
physical quantity. For example, by definition 1 in = 2.54 cm (exactly). This equiva-
lence enables us to write a conversion factor as follows:

1in
2.54 cm

Because both the numerator and the denominator express the same length, this fraction
is equal to 1. Similarly, we can write the conversion factor as

2.54 cm
1in

Figure 1.13 The distribution of
darts on a dart board shows the
difference between precise and
accurate. (a) Good accuracy and
good precision. (b) Poor accuracy
and good precision. (c) Poor
accuracy and poor precision. The
black dots show the positions of
the darts.

Dimensional analysis might also have led
Einstein to his famous mass-energy
equation E = mc2
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Remember that the unit we want appears
in the numerator and the unit we want to
cancel appears in the denominator.

which is also equal to 1. Conversion factors are useful for changing units. Thus, if
we wish to convert a length expressed in inches to centimeters, we multiply the length
by the appropriate conversion factor.

2.54 cm

12.00 it X = 30.48 cm

We choose the conversion factor that cancels the unit inches and produces the desired
unit, centimeters. Note that the result is expressed in four significant figures because
2.54 is an exact number.

Next let us consider the conversion of 57.8 meters to centimeters. This problem
can be expressed as

?7cm = 57.8 m
By definition,
lem=1X10"m

use w verting “cm,” w versi
Because we are converting “m” to “cm,” we choose the conversion factor that has
meters in the denominator,

1cm
1 X100 2m

and write the conversion as

1cm

?em = 578w X —————
1 X 10 “m
= 5780 cm

=578 X 10°cm

Note that scientific notation is used to indicate that the answer has three significant
figures. Again, the conversion factor 1 cm/1 X 10~ m contains exact numbers; there-
fore, it does not affect the number of significant figures.

In general, to apply dimensional analysis we use the relationship

given quantity X conversion factor = desired quantity
and the units cancel as follows:

. , desired unit . )
givepumit X ————— = desired unit

i
In dimensional analysis, the units are carried through the entire sequence of calcula-
tions. Therefore, if the equation is set up correctly, then all the units will cancel except
the desired one. If this is not the case, then an error must have been made somewhere,

and it can usually be spotted by reviewing the solution.

A Note on Problem Solving

At this point you have been introduced to scientific notation, significant figures, and
dimensional analysis, which will help you in solving numerical problems. Chemistry
is an experimental science and many of the problems are quantitative in nature. The
key to success in problem solving is practice. Just as a marathon runner cannot prepare
for a race by simply reading books on running and a pianist cannot give a successful
concert by only memorizing the musical score, you cannot be sure of your understanding
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of chemistry without solving problems. The following steps will help to improve your
skill at solving numerical problems.

1.

EXAMPLE 1.6

Read the question carefully. Understand the information that is given and what you are asked
to solve. Frequently it is helpful to make a sketch that will help you to visualize the situation.

Find the appropriate equation that relates the given information and the unknown quantity.
Sometimes solving a problem will involve more than one step, and you may be expected to
look up quantities in tables that are not provided in the problem. Dimensional analysis is
often needed to carry out conversions.

Check your answer for the correct sign, units, and significant figures.

A very important part of problem solving is being able to judge whether the answer is
reasonable. It is relatively easy to spot a wrong sign or incorrect units. But if a number (say 9) is
incorrectly placed in the denominator instead of in the numerator, the answer would be too
small even if the sign and units of the cal-culated quantity were correct.

One way to quickly check the answer is to make a “ball-park™ estimate. The idea here is to
round off the numbers in the calculation in such a way so as to simplify the arithmetic. This
approach is sometimes called the “back-of-the-envelope calculation” because it can be done
easily without using a calculator. The answer you get will not be exact, but it will be close to
the correct one.

A person’s average daily intake of glucose (a form of sugar) is 0.0833 pound (Ib). What Conversion factors for some of the English

is this mass in milligrams (mg)? (1 Ib = 453.6 g.) system units commonly used in the United
States for nonscientific measurements (for

example, pounds and inches) are provided
inside the back cover of this book.

Strategy The problem can be stated as
?mg = 0.0833 1b

The relationship between pounds and grams is given in the problem. This relationship will
enable conversion from pounds to grams. A metric conversion is then needed to convert
grams to milligrams (1 mg = 1 X 107> g). Arrange the appropriate conversion factors so
that pounds and grams cancel and the unit milligrams is obtained in your answer.

Solution The sequence of conversions is
pounds ——> grams ——> milligrams
Using the following conversion factors

453.6 g 1 mg
and
11b 1X10 g

we obtain the answer in one step:

453.6 ¢ » 1 mg
1 Iy 1xX10°¢g

?2mg = 0.0833 Is X = 3.78 X 10* mg

Check As an estimate, we note that 1 Ib is roughly 500 g and that 1 g = 1000 mg.
Therefore, 1 Ib is roughly 5 X 10° mg. Rounding off 0.0833 Ib to 0.1 Ib, we get
5 X 10* mg, which is close to the preceding quantity. Similar problem: 1.45.

Practice Exercise A roll of aluminum foil has a mass of 1.07 kg. What is its mass in TFARIS
pounds?
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As Examples 1.7 and 1.8 illustrate, conversion factors can be squared or cubed
in dimensional analysis.

EXAMPLE 1.7

An average adult has 5.2 L of blood. What is the volume of blood in m®?

Strategy The problem can be stated as
7m’ =52L

How many conversion factors are needed for this problem? Recall that 1 L = 1000 cm®
and 1 cm = 1 X 107° m.

Solution We need two conversion factors here: one to convert liters to cm® and one to
convert centimeters to meters:

1000 cm’ 1X10 %m
SOUE e =
1L 1cm

Because the second conversion factor deals with length (cm and m) and we want
volume here, it must therefore be cubed to give

power, any conversion factor you use must
also be raised to that power.

Remember that when a unit is raised to a 1 X 10%m % 1 X107 %m 2 1 X107 %m _ (1 X 1072 m>3

1 cm 1 cm 1 cm 1 cm
This means that 1 cm® = 1 X 107° m®. Now we can write

1X1072m
1 cm

1 3
o’ = 521 x 000 cm x(
1K

3
> =52X%X10°m’

Check From the preceding conversion factors you can show that 1 L = 1 X 107° m’.
Therefore, 5 L of blood would be equal to 5 X 10 m?, which is close to the answer.

Practice Exercise The volume of a room is 1.08 X 10® dm®. What is the volume in m’?

EXAMPLE 1.8

Liquid nitrogen is obtained from liquefied air and is used to prepare frozen goods and in
low-temperature research. The density of the liquid at its boiling point (—196°C or 77 K)
is 0.808 g/cm®. Convert the density to units of kg/m>.

Strategy The problem can be stated as
2 kg/m® = 0.808 g/cm’®

Two separate conversions are required for this problem: g — kg and cm® — m’.
Recall that 1 kg = 1000 g and 1 cm = 1 X 10> m.

Solution In Example 1.7 we saw that 1 cm® = 1 X 10 ° m®. The conversion factors are

1 kg an 1cm’
1000 g 1 X 10 °m?

Finally,

0.808¢  lkg 1 cnr®
lea®  1000g 1 X 10°m

» 2 kg/m® = < = 808 kg/m’

(Continued)
Liquid nitrogen.
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Check Because 1 m* = 1 X 10° em®, we would expect much more mass in 1 m® than

in 1 cm’. Therefore, the answer is reasonable.

Practice Exercise The density of the lightest metal, lithium (Li), is 5.34 X 107 kg/m”.

Convert the density to g/cm”.

Key Equations B

m
d="1 (L)

Summary of Facts and Coneepts

Equation for density

N

Answers to Practice Exercg

The study of chemistry involves three basic steps: ob-
servation, representation, and interpretation. Observa-
tion refers to measurements in the macroscopic world;
representation involves the use of shorthand notation
symbols and equations for communication; interpreta-
tions are based on atoms and molecules, which belong
to the microscopic world.

Chemists study matter and the changes it undergoes.
The substances that make up matter have unique physi-
cal properties that can be observed without changing
their identity and unique chemical properties that, when
they are demonstrated, do change the identity of the

substances. Mixtures, whether homogeneous or hetero-
geneous, can be separated into pure components by
physical means.

The simplest substances in chemistry are elements.
Compounds are formed by the chemical combination of
atoms of different elements in fixed proportions.

All substances, in principle, can exist in three states:
solid, liquid, and gas. The interconversion between these
states can be effected by changing the temperature.

SI units are used to express physical quantities in all
sciences, including chemistry.

Numbers expressed in scientific notation have the form
N X 10", where N is between 1 and 10, and 7 is a posi-
tive or negative integer. Scientific notation helps us
handle very large and very small quantities.

1.196.5g. 1.2341 g. 1.3 (a) 621.5°F, (b) 78.3°C,
(c) —196°C. 1.4 (a) Two, (b) four, (¢) three, (d) two,
(e) threeortw 1.5 (a) 26.76 L, (b) 4.4 g,

X 107 dm?, (d) 0.0756 g/mL, () 6.69 X 10* m.

1.62.361b. 1.7 1.08 X 10° m’. 1.8 0.534 g/cm’.





